
Age Zircon model

Methods1

Main model parameters2

Let us define a dataset of N dated zircons from S samples. We indicate with3

z = {z1, . . . , zN} the (unknown) ages of the zircons and with x = {x1, . . . , xS} the ages of4

the samples. The samples are ordered according on their depth and we assume their age5

strictly follows that order such that xi > xi−1. We indicate the set of zircons found in a6

sample s as zs.7

The exact age of each zircon (zi) is assumed to be unknown but linked to its8

measured age, which is expressed as a mean µi and a standard deviation σi. The mean ages9

µ and a standard deviations σ of all zircons represent the input data of the model, which10

aims to estimate the vector z and the ages of all samples mathbfx Since the age of zircons11

can be measured based on different methods (e.g. m ∈ {1, . . . ,M}, e.g. Zr-U-Pb, ZFT,12

Ar-Ar), the uncertainty around the true age of a zircon is assumed to be further affected by13

how it was measured. We compute the likelihood of the age of a zircon i based on a normal14

density (Fig. 1):15

P (µi|zi, σi, εm) ∼ N (zi, σi + εm) (1)
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where εm ∈ R+ is the bias in the estimated error of the measurement method m. The16

parameters zi and εm are considered as unknown and estimated from the data using a17

Bayesian algorithm.18
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Figure 1: Example of three zircons with estimated ages of 10, 14, and 17 Ma (µ; indicated by
the dashed vertical lines) and standard deviations (σ + ε; shown by the gray shaded areas).
The sampled true ages are indicated by the red circles.

The value of xj, the age of the jth sample, is determined by two latent variables (rj19

and Ij) and constrained by sampled values of z such that xi > xi−1 for i ∈ {2, . . . , S}.20

Specifically, we define as21

ζj = min(zs), for s ∈ {j, . . . , S}, (2)

the minimum age across all zircons included in sample j and in all older samples. Thus, ζj22

represents the upper (older) boundary for the age of sample j, which must be younger than23

all following samples (ordered by depth) and than its youngest zircon. Under this notation24
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we define the age of a sample as:25

xj =

!
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rj(ζj), if j = 1

xj−1 + rj(ζj − xj−1), if j > 1
(3)

where rj ∈ (0, 1) is an estimated sample-specific latent parameter determining how close xj26

is to its lower boundary xj−1 (or to 0 if j = 1). Thus, when rj ≈ 0 the age of the sample is27

close to its younger boundary and when rj ≈ 1 the age of the sample is close to its older28

boundary. We also account for the fact that a zircon can be younger than the sample it29

was found in, for instance due to a dating error or a later recrystallization of the zircon. To30

account for this possibility, we additionally estimate a vector of identifiers I = {I1, . . . , IN}31

that define which zircons (identified by I = 1) are older than the sample and there fore32

used to determine its upper age boundary and which zircons (identified by I = 0) are33

younger than the age of the sample. Thus, the upper boundary of a sample age is:34

ζj = min(zs\Is0), for s ∈ {j, . . . , N}, (4)

where zs\Is0 indicates the subset of zircons in sample s with indicator equal to 1.35

We can now define the prior probability of zji , i.e. the ith zircon in sample j as a36

function of the age of the sample (xj) and an estimated scale parameter sj. Specifically we37

model the prior distribution of zircons in a sample using a compound-Uniform-Cauchy38

distribution, defined as:39

P (zi,j|xj, sj) =
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zi,j ∼ U(0, 2xj), if zi,j < xj

zi,j ∼ C(xj, sj), if zi,j ≥ xj

(5)

where sj is the sample-specific scale parameter of the Cauchy distribution. Under this40

parameterization, the age of the zircons identified as younger than the sample will have a41
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prior uniform probability ranging from 0 to the age of the sample and rescaled to integrate42

to 0.5. The other zircons will instead follow a half-Cauchy distribution with mode equal to43

the age of the sample (Fig. 2).44
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Figure 2: Probability distributions of zircon ages in four samples sorted from oldest (sample
0) to most recent (sample 3). Red filled circles indicate zircons identified as older that the
age of the sample, shown as a blue square. Red empty circles indicate zircons identified as
younger than the sample. The gray shaded areas display the relative probability distribution
of the zircon ages multiplied by the probability of the respective indicator (here set to
P (I = 0) = 0.1). We note that the maximum age of sample 1 (x1) is not determined by its
youngest zircon (of age 20 Ma), but by the age of the previous sample x0.
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Priors and hyper-priors45

We use a half-Cauchy prior for the vector of scale parameters of the compound46

Uniform-Cauchy distributions {s1, . . . , sS} ∼ C+(0, β), where the scale parameter β is47

assumed to be unknown and estimated through MCMC, with a gamma hyper-prior48

β ∼ Γ(10, 0.5). We set an exponential prior on the vector of parameters49

{ε1, . . . , εM} ∼ Exp(0.1). We use a beta distribution as prior on the vector of parameters50

{r1 . . . , rS} ∼ B(a, b) and consider the shape parameters a and b themselves as unknown51

parameters and assign them exponential hyper-priors, a, b ∼ Exp(0.1). Finally we use a52

Bernoulli distribution as prior on the indicators {I1, . . . , IN} with parameter p = 0.99, thus53

assigning a 0.01 prior probability for a zircon to be younger than the sample it is assigned54

to. This informative prior assumes that only a small fraction of the zircons might have55

re-crystallized or is otherwise erroneously dated.56

Parameter estimation57

The model includes 2N + 2M + 2S + 3 parameters (z and I, ε, s and r, a and b and58

β, respectively). All parameters are estimated through Metropolis-Hastings Markov chain59

Monte Carlo (MCMC). We use a sliding window proposal with reflection at the boundaries60

for r, normal kernel proposals for z, binomial proposals for I. We use multiplier proposals61

on all other parameters since they only span the positive range.62
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