
Motion from the past – Technical appendix

I. Central streamlines extraction
This appendix describes the algorithm we designed to compute the central streamlines 

of semicircular canals from a mesh of either osseous or membranous labyrinthine surface. The 
procedure is decomposed into four main steps:

(i) data organization and completion
(ii) building of an interior cloud of points
(iii) computing the centres of optimal sections
(iv) polygon editing and interpolation

1) Data organization and completion:
Several computations in the following steps involve the selection of spatial neighbours 

of a given point. In order to reduce computational costs, all 3D data points are reordered in 
small cubic boxes. Cubic boxes are defined as integer division of the enveloping box, which is 
the smallest  rectangular  parallelepiped including all  data  points.  Such a  data  organization 
allows finding neighbours of a given point without checking all data points, but only those 
contained in neighbour boxes. 
If  not  already  available,  the  normal  vector  and  the  barycentre  of  all  triangles  are  also 
computed at this step. The labyrinthine surface is therefore completed by a set of 6D data {X i, 
Ni} where Xi is the barycentre and Ni the vector normal to the ith triangle. By convention, the 
normal vectors are directed towards the inside of the labyrinthine cavity.

2) The interior cloud of points
Ideally, we seek for the cut-locus of the boundary surface of a closed volume, i.e. the 

locus of points equidistant from 3 points of the surface. Since the surface is not smooth, but 
approximated by a set of triangles and since the computation of the cut-locus is of the order of 
n3 (n is the number of triangles), the exact computation of the cut-locus of boundary surface is 
not tractable. Instead, the aim of this second step is to provide a reasonable approximation of 
the cut-locus as the cloud of points which are the centres of maximal inscribed spheres. First, 
we compute for each triangle the maximal positive scalar ρi such that the sphere centred on Ci 

= Xi + ρi.Ni and of radius ρi contains no other barycentre than Xj such that the angle between 
Nj and Ni is greater or equal to 90°. The radius ρi is quickly found by dichotomy. The centre 
Ci and the normal vectors define a plane πi (which is a crude approximation of an optimal 
section plane, see below) orthogonal to the cross product NixNj. 

Once all the triangles have been processed, we refine the centre and radius of each sphere (C i, 
ρi)  with  Ci   contained  in  the  plane  πi.  We look for  bigger  spheres  (C'i,  ρ'i >  ρi)  with  C'i 
contained in the slice parallel to πi of thickness δ. If any, we projected their centres back on 
the plane, and we tested whether the new inscribed sphere (C''i, ρ''i) has or not a greater radius 
than the initial one. We define the interior cloud of points as the set of centre of spheres of 
maximal radius obtained by repeating this procedure until no radius increase can be further 
obtained (Fig. 1).



3) The centres of optimal sections
The goal  of  this  step is  to  provide a  more  precise  evaluation  of  the canal  central 

streamline,  defined as the locus  of barycentres  of optimal  sections.  An optimal  section is 
defined as the planar section of minimal area mostly orthogonal to the canal surface. If a canal 
could be well approximated by a cylinder, the central streamline would merge in its axis. In 
this  case,  the  maximal  inscribed  sphere  centres  obtained  in  the  previous  section  would 
accurately specify the central streamline. However, this assumption is far from exact , and, as 
shown in figure 1, the sphere centres frequently spread away from the apparent axis.  The 
centres  of optimal  sections are  computed  with the following procedure.  Given an interior 
point C and a plane π passing through C, one computes the section S(C, π) of the mesh as the 
set of intersections of all the triangles with π which are visible (i.e. not occluded by other 
triangles) from the point C. The area, the perimeter and the barycentre of S(C, π) are also 
computed. We then define the following iterative process to find the optimal section:

(i) The  process  is  initialized  by  setting  C(0)  and  π(0)  as  one  centre  Ci and  its 
associated plane πi extracted from the interior cloud built in the previous step.

Figure 1: Raw interior cloud of points (in red).



(ii) C(k+1) is computed as the barycentre of the section S(C(k), π(k))
(iii) The normals of visible intersected triangles are used to build the 3x3 symmetric 

matrix M = Σj  Nj
T.Nj. The eigenvectors and the real positive eigenvalues of M are 

computed. The normalized eigenvector N with the smallest eigenvalue is the most 
orthogonal direction to the set of normals, i.e. it minimized Σj (N.Nj

T)2 
(iv) π(k+1) is the plane passing through C(k+1) and orthogonal to N  

We define the “optimal section” as the one in this sequence which has the minimal area. In 
practice, a few iterations (about ten) are sufficient to get the optimal section and its barycentre 
with reasonable accuracy. The figure 2 shows the result of this process.    

Figure 2: Barycentres of the optimal sections (in red).



4) Polygon edition and interpolation

The objective of this step is to transform a cloud of points, thought to be reasonably 
close to the main axis of the canals, into a set of sufficiently regular 3D polygons. We start by 
picking one centre of optimal section obtained in the previous step, which constitutes the first 
summit P(0) of a new polygon. Then we move along the direction N(0) orthogonal to the 
optimal section on a small distance δ. The next summit P(1) and the next direction of move 
N(1) are obtained from the iterative process defined in step 3, using P(0) + δ.N(0) and N(0) to 
initialize the centre  and the intersection  plane.  The centres of optimal  sections  which are 
crossed during the move are removed. The polygon is built by repeating this process until one 
of the following stop conditions is reached:

(i) All the centres of optimal sections have been removed.
(ii) The area of the optimal section of the last summit exceeds a threshold Amax.
(iii) The angle between two successive directions of displacement exceeds a threshold 

Dmax.
Whenever it is possible, the polygon is completed by the opposite one, that is the polygon 
starting from P(0) and moving in the opposite direction N’(0) = - N(0).

This  automatic  process  provides  good  results  in  the  thin  parts  of  canals,  but  has  to  be 
manually edited to remove too short polygons or polygons outside the regions of interest. For 
various reasons due to the morphology of the labyrinths, the automatic procedure does not 
generate a complete set of polygons for all the semi-circular canals. A complete polygon set is 
finally generated using 3D cubic B-spline interpolation and straight lines. Two summits from 
two different polygons are connected by a third order polynomial curve constrained to pass 
through both summits, to be tangent to both polygons and to have a minimal curvature in the 
vicinity of both summits. The final result of the whole procedure is in figure 3. On a standard 
desktop computer, the whole procedure can be performed in less than one hour per labyrinth 
(manual edition not included).  



II. Calculation of referential axes coordinates

1) Calculation of the z axis
In the proposed system, the z axis corresponds to the axis which is perpendicular to the 

lateral canals synergistic pair plane. The z vector is a unit vector and points dorsally, so we 
have : 
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2) Calculation of the x axis
The x axis corresponds to the axis which is perpendicular to the coronal plane. The x

vector is a unit vector and points to the left.  Since the plane of bilateral symmetry of the 

Figure 3: Raw polygons resulting from the entire process.



vectors (coronal plane) differs from the plane of bilateral  symmetry of the canals (sagittal 
plane), we have :
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x=
x1x2
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3) Calculation of the y axis
The y axis corresponds to the axis which is perpendicular to the bilateral symmetry 

plane. The y vector is a unit vector and points to the left. 
y=z×x  (5)

After calculation,  any object coordinates can be simply converted in the reference system 
coordinates using passage matrices. Such conversion is presented in figure 4.



III. Calculation of the response analyses

1) Total response
The total response of the system is calculated in attributing to all spherical coordinates

 , ,  where  correspond  to  the  inclination  and  to  the  azimuth,  the  value RT  ,
where : 

RT  ,=∑∥ ,.X ' n∥  (6)

  , is  an  angular  acceleration  vector  with  a  normalized  magnitude  and  of  spherical 

coordinates  , andX ' n corresponds to each of the six sensitivity vectors of the system.

2) Global response
The  global  response  of  the  system  is  calculated  in  attributing  to  all  spherical 

coordinates  , , where  corresponds to the inclination and  to the azimuth, the value
RG  , where : 

RG  ,=∑ ,.X ' n  (7)

  , is  an  angular  acceleration  vector  with  a  normalized  magnitude  and  of  spherical 

coordinates  , andX ' n corresponds to each of the six sensitivity vectors of the system.

Figure 4: A - SCFS in the scan reference system. B 
– The same  vectorial structure  in  the semicircular 
canals reference system.


	Motion from the past – Technical appendix
	I. Central streamlines extraction
	1) Data organization and completion:
	2) The interior cloud of points
	3) The centres of optimal sections
	4) Polygon edition and interpolation

	II. Calculation of referential axes coordinates
	1) Calculation of the z axis	
	2) Calculation of the x axis
	3) Calculation of the y axis

	III. Calculation of the response analyses
	1) Total response	
	2) Global response	



