
Equations for Labyrinths. Summary.

The references we are following are Oman et al. 1987, Damiano-Rabbitt,
1992, 1996, Rabbitt 1999, and Muller-Verhagen 2002.

As in Rabbitt 1999, eq.3.1, let us denote by Qn the volume displacement at
the level of cupula :

Qn(t) =

∫ ∫

Σn

wn(σ, t)dσ (1)

where Σn is the surface of the cupula, dσ is its superficial measure, and
wn(σ, t) is the linear orthogonal displacement of the point σ of Σn at time t.

As shown by all mentioned authors, the value Qn(t) is well explained by a
differential equation

In.Q̈n + Bn.Q̇n + Kn.Qn = Fn, (2)

where the difference of pressure Fn acting on the cupula depends on time
but the coefficients In, Bn, Kn are constant characteristics of the semicircular
canal of index n.
The canal numbered by the index n is assimilated to a three dimensional
volume Mn, fibred by transverse discs of variable shape and area, centered
on a closed curve Γn. The central curve Γn can be parameterized by its
arc-length s, then a(s) denotes the area of the transverse section ∆(s). The
following formulas hold in good approximation :

In = ρ

∫
a−1(s)ds (3)

Bn = λµ

∫
a−2(s)ds (4)

Kn = λγ

∫
a−2(s)ds (5)

where the letters ρ, µ, γ denote respectively the density, the viscosity and
shear stiffness of the endolymph, and λ is a constant depending on chosen
units.

If
−→
Ω denotes the angular velocity vector, the pressure is given by

Fn =
−→
S n.

d
−→
Ω

dt
(6)
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where the vector
−→
S n is defined by the integral

−→
S n = ρ

∫
(
−−→
r(s)×−−→t(s))ds (7)

The geometric meaning (...) of the scalar product
−→
S n.d

−→
Ω/dt is that it repre-

sents the algebraic area enclosed by the projection of the central line after
projection parallel to the angular acceleration.

The inspection of units shows that all terms in the equation (2) have the
same dimension, which is the dimension of a pressure ML−1T−2.

For the sensitivity, what is important is the maximal deflection of hair
cells on the crista epithelium inside the ampulla, and it is proportional to
the maximum of the orthogonal displacement θn in the center of the cupula.
But, if the total area of the cupula section is equal to An, it is legitimate to
assume that, in good approximation on the central part of the cupula, we
have CQn = Anθn, for a universal constant C, given by Poiseuille flow. The
equation satisfied by θn is

In.θ̈n + Bn.θ̇n + Kn.θn =
C

An

Fn, (8)

Each membranous duct Mn is composed of (at most) four distinguished
parts : the finest duct Cn, the part in the crux communis CCn, the part
in the utricular cavity UCn, and a last part in the ampulla ACn. We will de-
note by Ln the total length of the duct, by L(Cn), L(CCn), L(UCn), L(ACn)
respectively the length in each part, and also by an,bn, aun, aan the mean
area of the section in Cn,CCn, UCn, ACn respectively.
The leading coefficient In is equal to L(Cn)/an+L(CCn)/bn +L(UCn)/aun+
L(ACn)/aan, and is well approximated by L(Cn)/an +(L(CCn))/bn, because
L(ACn) is small in comparison of other lengths, and because aun is much lar-
ger than an or bn. More crudely we can estimate the size of In by L(Cn)/an.
Muller and Verhagen (2002) gave theoretical and empirical arguments for the
rule bn/an = 2, so a better formula is

In ≈ (L(Cn) +
1

2
L(CCn))/an (9)

The solution of (8) when Fn is given is scaled by the quantity 1/AnIn, which,
as we just saw, depends on the geometry as the ratio an/AnL(Cn). Of course,
as we will see below, the coefficients of the differential equation (8) have also
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an effect on the size of the solution, largely dependent on the shape of Fn

but the factor 1/AnIn in front of Fn is inevitable.
We introduce the following plausible hypothesis : the ratio an/An is approxi-
mately a constant independent of the chosen canal in the same labyrinth. Re-
mark we cannot suppose that the ratio of other lengths, as L(CCCn)/L(Cn)
for instance, are constants, but we know how to get estimation of all these
lengths.
The sensitivity can be defined as the size of the deviation of the cupula mem-
brane with respect to the size of the angular acceleration, so it is proportional

to the norm of the vector
−→
S n and also of the coefficient appearing to the left

of the transfer, that is an/AnL(Cn), then we propose as a definition for the
vector measuring sensitivity the following vector :

−→
Xn =

−→
S n/L(Cn). (10)

We chose this formula for simplicity, but it is certainly preferable to replace
L(Cn) by L(Cn)+ 1

2
L(CCn), taking in account the empirical law for section’s

areas : bn/an = 2.

The simple linear second order model was able to explain fairly well the
response of the cupula to diverse kind of stimuli (cf. Wilson and Melvill-
Jones). The differential equation to be studied is

θ̈(t) +
Bn

In

θ̇(t) +
Kn

In

θ(t) = f(t). (11)

There exist two time constants T1 ≈ In/Bn, T2 ≈ Bn/Kn organizing the
responses. All experiments show that T1 is negligible in front of T2. For ins-
tance, in humans T1 ≈ 0.003s, T2 ≈ 10s.
The solutions of (11) for f ≡ 0 are linear combinations of the two functions
exp(−t/T1) and exp(−t/T2).

The classical transfer analysis study the oscillatory response to a stimulus of
the form

f(t) = f0 cos(ωt + ϕ) (12)

That is :
θ(t) = G(ω) cos(ωt + ϕ− ωΦ(ω)) (13)

The quantity G(ω) is traditionally called the gain, and the quantity Φ(ω) is
called the phase delay.
When ω is small compared to 1/T2, these quantities do not vary a lot, the
gain is about T1T2 which is strictly equal to In/Kn, the phase delay is nearly
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0. Also, in an interval of frequency ω between 1/T2 and 1/T1, when ωT1 is
small but ωT2 is large, the gain varies as T1/ω and the phase delay is around
−π/2, which is interpreted as a regression to velocity capture. So, it is le-
gitimate to conclude from the model that, when the reproduced frequency
varies from Kn/Bn to Bn/In, the velocity sensitivity is estimated by In/Bn.
As we saw before, both these gains are proportional to the area an of the

fine section. To compute a complete sensitivity to a vibratory stimulus
−−→
Ω(t)

in space, with frequency less than 1/T1, we obtain a measure proportional to

an‖−→Xn‖.
However, to the contrary, for high frequency, when ωT1 and ωT2 are large,
the gain becomes independent of T1 and T2 and proportional to 1/ω2. This
shows that an has no effect at this order.
This independency holds also true for response starting from rest to a smooth
signal f(t), a case which from Fourier analysis, also corresponds to high fre-
quency behavior. In these regimes, the measure of sensitivity is better taken

as ‖−→Xn‖ itself.
To summarize, we have :

Proposition : for very smooth variations of acceleration and for high frequency
regime, the factor an has few influence, but for constant accelerations and for
middle frequency regime, this factor an has big influence.
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