Epipaleolithic Human Appendicular Remains from Ein Gev I, Israel Supporting Information

Les Restes des Membres du Squelette Humain du Epipaléolithique d'Ein Gev I, Israël Donnés Supplémentaires

Erik Trinkaus

Department of Anthropology, Washington University, Saint Louis MO 63130, USA

	M -# 1	Right	Left
Maximum length ²	1	(314.5)	
Articular length ³	2	(314.0)	
Mid-shaft maximum diameter ⁴	5	21.0	20.0
Mid-shaft minimum diameter ⁴	6	19.0	18.0
Mid-shaft antero-posterior diameter		20.4	19.6
Mid-shaft medio-lateral diameter		19.5	17.7
Distal minimum circumference ⁴	7	58.0	
Pectoralis major breadth ⁵		5.2	
Deltoid tuberosity breadth ⁵		6.0	
Distal epicondylar breadth	4	57.5	
Distal articular breadth	12a	40.5	
Olecranon breadth	14	25.2	24.5
Medial pillar thickness		9.0	8.8
Lateral pillar thickness		14.8	(16.0)

Table S1. Osteometric dimensions of the Ein Gev 1 humeri, in mm.

¹ M-# refers to the measurement definition in the Martin system (Bräuer, 1988).

² Maximum length estimated from the distance between the distal trochlea and the distal lesser tubercle (LTMaxLen; Ein Gev 1: 272.0 mm), using a least squares regression from a recent human sample: MaxLen = (1.147 x LTMaxLen) + 2.51, r² = 0.955, n = 40; Ein Gev 1 = 314.5 ± 4.6 mm, SE = 1.46%. The recent human sample is a pooled 20th century cadaver and later prehistoric Missouri Native American sample.
³ Articular length estimated from the distance between the distal capitulum and the distal lesser tubercle (Ein Gev 1: 271.0 mm), using a least squares regression from a recent human sample of humeri: ArtLen = (1.146 x LTArtLen) + 3.61, r² = 0.953, n = 40; Ein Gev 1 = 314.1 ± 4.6 mm, SE = 1.46%. Reference sample same as in note 2.

⁴ Measurement from Arensburg (1977).

⁵ Maximum breadths of the muscular insertion rugosities.

	Right	Left
Mid-distal shaft (35%)		
Total area (mm ²): TA	278.2	236.9
Cortical area (mm ²): CA	223.3	206.5
Ant-post second moment of area (mm ⁴): I_x	6417	4895
Med-lat second moment of area (mm ⁴): I _y	5535	4043
Maximum second moment of area (mm ⁴): I _{max}	6538	5044
Minimum second moment of area (mm ⁴): I _{min}	5415	3894
Polar moment of area (mm ⁴): J / I _p	11953	8938
Mid-shaft (50%)		
Total area (mm ²): TA	299.9	269.1
Cortical area (mm ²): CA	226.2	202.8
Ant-post second moment of area (mm ⁴): I_x	7108	5593
Med-lat second moment of area (mm^4): I_y	6513	5351
Maximum second moment of area (mm ⁴): I _{max}	7691	5913
Minimum second moment of area (mm ⁴): I _{min}	5930	5031
Polar moment of area (mm ⁴): J / I _p	13621	10944
Mid-proximal shaft (65%)		
Total area (mm ²): TA	348.5	289.2
Cortical area (mm ²): CA	174.9	173.6
Ant-post second moment of area (mm ⁴): I _x	7802	6455
Med-lat second moment of area (mm^4): I_y	6576	4960
Maximum second moment of area (mm ⁴): I _{max}	8142	6513
Minimum second moment of area (mm ⁴): I _{min}	6236	4901
Polar moment of area (mm ⁴): J / I _p	14378	11414

 Table S2. Cross-sectional diaphyseal parameters of the Ein Gev 1 humeri.

	M- #	Right	Left
Ulnae			
Maximum length	1		241.0
Total length	2(1)		238.0
Articular length	2		(211.0)
Biomechanical length ¹			223.0
Mid-shaft antero-posterior depth ²		23.0	22.0
Mid-shaft medio-lateral breadth ²		16.0	15.0
Dorsal curvature chord ³			190.5
Dorsal curvature subtense ³		-	5.0
Radius			
Maximum length ⁴	1	(225.5)	
Articular length ⁴	2	(215.0)	
Mid-shaft antero-posterior depth ²		11.0	
Mid-shaft medio-lateral breadth ²		13.0	
Distal minimum circumference ²	3	40.0	
Lateral curvature chord ⁵		147.0	
Lateral curvature subtense ⁵		5.0	

Table S3. Osteometric dimensions of the Ein Gev 1 ulnae and right radius, in mm.

¹ Distance from the middle of the trochlear notch to the distal head.

² Measurement from Arensburg (1977).

³ Dorsal chord from opposite the coronoid process to the dorsal concavity just proximal of the head, plus the maximum subtense from the chord to the dorsal diaphysis. The resultant index is M-4.

⁴ Radial maximum and articular lengths estimated from the ulnar biomechanical length, using least squares regressions from a recent human sample of paired radii and ulnae: RadMaxLen = (0.999 x UlnBiomLen) + 2.25, r² = 0.941, n = 40, Ein Gev 1 = 225.0 ± 4.6 mm, SE = 2.04%; RadArtLen = (0.957 x UlnBiomLen) + 2.24, r² = 0.961, n = 40, Ein Gev 1 = 215.5 ± 3.5 mm, SE = 1.64%. Reference sample of paired radii and ulnae from the late prehistoric Pecos Pueblo Native American sample.

⁵ Lateral chord from opposite the distal radial tuberosity to the lateral concavity just proximal of the distal epiphysis, plus the maximum subtense from the chord to the lateral diaphysis. The resultant index is M-6.

Hamate Right		Trapezium Left	
Maximum height	21.8	Dorsal breadth	16.8
Metacarpal facet height	9.8	Maximum thickness	11.7
Metacarpal facet breadth	15.3	Minimum thickness	6.6
Hamulus length (prox-dist)	9.6	Metacarpal 1 facet breadth	14.2
Hamulus thickness (rad-uln)	4.8	Metacarpal 1 facet height	10.8
Hamulus palmar projection	9.8	Tubercle length	11.0
		Tubercle thickness	3.5
		Tubercle projection	1.5
Metacarpals			
Metacarpal 1 articular length	42.3	Metacarpal 4 articular length	52.8
Metacarpal 3 articular length ¹	(59.4)	Metacarpal 3 maximum length ¹	(60.2)

Table S4. Select Ein Gev 1 carpal and metacarpal osteometric dimensions.

¹ The metacarpal 3 articular length is estimated from the metacarpal 1 and 4 articular lengths using a least squares multiple regressions from a recent human sample: MC3L = (0.247 x MC1L) + (0.895 x MC4L) + 1.66, $r^2 = 0.903$, n = 184; Ein Gev $1 = 59.4 \pm 1.4$ mm, SE = 2.29%. The maximum length is then estimated by adding the styloid process projection (0.8 mm) measured on the original bone onto the articular length. The recent human sample is a pooled 20th century cadaver and later prehistoric Missouri Native American sample.

	M- #	Femur Left	Tibia Right
Maximum length ¹	1	(416)	
Bicondylar length ²	2	(410)	
Biomechanical length ³		(391)	
Proximal maximum diameter ⁴		31.7	
Proximal minimum diameter ⁴		23.6	
Proximal antero-posterior diameter	10	29.8	35.0
Proximal medio-lateral diameter	9	25.2	24.0
Mid-shaft antero-posterior diameter	6	30.0	27.5
Mid-shaft medio-lateral diameter	7	24.0	16.8
Anterior shaft curvature chord	27	298.0	
Anterior shaft curvature subtense		10.0	
Femoral head diameter ⁵	19	(45.0)	
Lateral condyle antero-posterior depth	22	(60.0)	

Table S5. Osteometric dimensions of the Ein Gev left femur and right tibia.

¹ The maximum length is estimated from the mid-lesser trochanter to the average of the distance to the distal condyles of the Ein Gev femur (EGLen: 344 mm) using a least squares regression based on a recent human sample: MaxLen = (1.17 x EGLen) + 13.8, r² = 0.952, n = 47; Ein Gev 1 = 415.8 ± 6.6 mm, SE = 1.58%. The recent human sample is a pooled 20th century cadaver and later prehistoric Missouri Native American sample.

- ² The bicondylar length is estimated from the mid-lesser trochanter to the average distance to the distal condyles of the Ein Gev femur (344 mm) using a least squares regression based on a recent human sample: BicLen = (1.16 x EGLen) + 10.1, $r^2 = 0.953$, n = 47; Ein Gev $1 = 409.7 \pm 6.5$ mm, SE = 1.58%. Recent human reference sample as in note 1.
- ³ The distance from the proximal neck to the average distance to the distal condyles, parallel to the diaphyseal axis. It is estimated from the mid-lesser trochanter to the average distance to the distal condyles of the Ein Gev femur (344 mm) using a least squares regression based on a recent human sample: BiomLen = (1.07 x EGLen) + 21.82, $r^2 = 0.970$, n = 47; Ein Gev 1 = 390.9 ± 4.7 mm, SE = 1.22%. Note that the SE_{est} is less than for the maximum and bicondylar lengths, because this measurement does not incorporate variation in the neck-shaft angle. Recent human reference same as in note 1. An estimated tibial biomechanical length was previously employed (Trinkaus, 2018) to scale the Ein Gev 1 tibial midshaft geometric parameters; that length estimate is now considered to be insufficiently reliable and is therefore not included here.
- ⁴ The maximum antero-medial to postero-lateral diameter, and the perpendicular to it, at the maximum development of the gluteal buttress.
- ⁵ The femoral (antero-posterior) diameter is estimated from the acetabular height using a least squares regression based on a recent human sample: FemHdDia = (0.94 x AcetHt) -5.95, $r^2 = 0.939$, n = 89; Ein Gev 1 = 45.0 ± 1.3 mm, SE = 2.80%. Similar estimation of the femoral head diameter from the lateral condylar depth provides a slightly less precise and lower, but statistically identical, value: FemHdDia = (0.630 x LatCondDep) + 6.37, $r^2 = 0.885$, n = 39; Ein Gev 1 = 44.1 ± 1.5 mm, SE = 3.40%. The recent human references samples are paired femora and hip bones from the late prehistoric Pecos Pueblo Native Americans for the acetabulum to femoral head dimensions, and a pooled sample of 20th century Chinese and Euroamerican femora for the condyle to femoral head dimensions (see Shang and Trinkaus, 2010 for the latter)..

	Femur Left	Tibia Right
Distal shaft (20%)		
Total area (mm ²): TA	729.4	
Cortical area (mm ²): CA	299.8	
Ant-post second moment of area (mm ⁴): I _x	23763	
Med-lat second moment of area (mm ⁴): I _y	32159	
Maximum second moment of area (mm ⁴): I _{max}	32634	
Minimum second moment of area (mm ⁴): I _{min}	23287	
Polar moment of area (mm ⁴): J / I _p	55921	
Mid-distal shaft (35%)		
Total area (mm ²): TA	568.0	
Cortical area (mm ²): CA	343.1	
Ant-post second moment of area (mm ⁴): I_x	24727	
Med-lat second moment of area (mm ⁴): I_y	19667	
Maximum second moment of area (mm^4): I_{max}	24977	
Minimum second moment of area (mm ⁴): I _{min}	19417	
Polar moment of area (mm ⁴): J / I _p	44394	
Mid-shaft (50%)		
Total area (mm ²): TA	530.8	341.2
Cortical area (mm ²): CA	393.0	268.7
Ant-post second moment of area (mm ⁴): I _x	28342	14700
Med-lat second moment of area (mm ⁴): I_y	15851	6142
Maximum second moment of area (mm^4): I_{max}	28365	15730
Minimum second moment of area (mm ⁴): I _{min}	15828	5113
Polar moment of area (mm ⁴): J / I _p	44193	20843
Mid-proximal shaft (65%)		
Total area (mm ²): TA	496.4	
Cortical area (mm ²): CA	423.5	
Ant-post second moment of area (mm ⁴): I _x	22203	
Med-lat second moment of area (mm ⁴): I_y	16621	
Maximum second moment of area (mm ⁴): I _{max}	23508	
Minimum second moment of area (mm ⁴): I _{min}	15315	
Polar moment of area (mm ⁴): J / I _p	38823	
Proximal shaft (80%)		
Total area (mm ²): TA	546.8	
Cortical area (mm ²): CA	384.5	
Ant-post second moment of area (mm4): I _x	19920	
Med-lat second moment of area (mm4): I _v	26259	
Maximum second moment of area (mm ⁴): I _{max}	30487	
Minimum second moment of area (mm ⁴): I_{min}	15693	
Polar moment of area (mm4): J / J	46180	

Table S6. Cross-sectional diaphyseal parameters of the Ein Gev 1 left femur and right tibia.

	M- #	
Talus		
Articular breadth	32bb	43.5
Articular height	3b	23.0
Trochlear breadth	5	27.8
Lateral malleolar height		24.5
Lateral malleolar oblique height	7a	26.0
Head-neck length	8	19.5
Head breadth	10	(21.0)
Posterior calcaneal breadth	13	20.9
Neck angle	16	22°
Trochlear angle		4°
Calcaneus		
Medial breadth	2	39.4
Sustentacular breadth	6	9.2

Table S7. Osteometric dimensions of the Ein Gev 1 right talus and calcaneus, in millimeters and degrees.

Table S8. Discrete traits of the Ein Gev 1 right talus, calcaneus, navicular, and cuboid.

Talus	
Medial malleolar distal extension	present
Medial trochlear distal extension	absent
Lateral malleolar distal extension	present
Medial squatting facet	absent
Lateral squatting facet	present
Sulcus tali rounding	present
Sulcus tali facet	absent
Antero-medial calcaneal facet fusion	fully fused
Calcaneus	
Antero-medial talar facet fusion	fused – no notch
Navicular	
Navicular-cuboid facet	present
Cuboid	
Navicular-cuboid facet	present
Peroneal facet	present – prox edge

	Cuboid	Med. Cun	Med. Cun.	Int. Cun.	Lat. Cun.
	Right	Right	Left	Left	Left
Height	22.7				
Medial length (M-1)	25.5				
Lateral length (M-2)	14.1				
Dorsal length (M-1)		22.3		14.4	18.6
Middle length (M-2)		20.8	20.5	13.7	17.0
Metatarsal height (M-5)	15.7	25.4			
Metatarsal breadth (M-3)	24.2			11.2	(12.6)

Table S9. Osteometric dimensions of the Ein Gev 1 cuboid and cunieform bones, in millimeters.

Table S10. Osteometric dimensions of the Ein Gev 1 left metatarsals, in millimeters.

	MT-1	MT-2	MT-3	MT-4	MT-5
Maximum length	57.2	70.9			
Articular length	55.2	69.0			
Mid-shaft height	11.9	9.3	9.3	9.0	9.3
Mid-shaft breadth	12.5	6.8	6.4	6.8	6.9
Prox max height		18.6	18.8	17.3	16.4p
Prox max breadth		14.5	13.3	12.4	21.4p
Prox artic height		(18.0)	18.7	15.7	
Prox artic breadth		12.9	12.3	10.1	
Distal height	20.4	15.3			
Distal max breadth	21.8	10.8			
Distal artic breadth	17.7	10.8			
Horiz head angle ¹	9 °				
Horiz base angle ²		7 °		21°	

¹ The angle between the intersesamoid crest in plantar view and the diaphyseal axis, as a reflection of hallux valgus.

² The angle between the medio-lateral tangent to the tarsal facet and the diaphyseal axis, as a reflection of pedal arch formation.

	Prox Phal 1	Prox Phal 2	Mid Phal ?
Maximum length	34.4		11.1
Articular length	(26.0)		9.2
Mid-shaft height	9.5	5.9	
Mid-shaft breadth	12.7	6.0	
Proximal maximum height		10.3	7.7
Proximal maximum breadth		11.4	9.5
Proximal articular height		9.0	6.5
Proximal articular breadth		9.9	9.2
Distal height	10.8		4.7
Distal breadth	(16.5)		8.4

Table S11. Osteometric dimensions of the Ein Gev 1 pedal phalanges, in millimeters.¹

¹ The proximal phalanx 1 is crushed onto the medial side of the left metatarsal 1 head, and therefore it is assumed to be left. The sides of the proximal phalanx 2 and the middle phalanx are unknown, but the lateral deviation of the middle phalanx head implies that it is left, and the proximal phalanx 2 may well be left by association.

Table S12.	Comparative sample probability values ¹	and Z-scores ²	for Ein C	Gev 1 relative to	o each
of th	e comparatie samples. ³				

	Kruskal-Wallis p-value		Z-score for Ein Gev 1 versus			
	4 samples	5 samples	EUP	LUP	NEA	NWA
Humerus 50%						
Dominant J vs. BML	< 0.001	< 0.001	0.700	-0.995	-0.899	0.322
Non-dominant J vs. BML	< 0.001	0.001	0.793	-0.419	-0.734	0.149
Dominant I _{max} vs. I _{min}	0.153	0.241	-1.655	-1.778	-1.102	-1.753
Non-dominant I_{max} vs. I_{min}	0.051	0.085	-0.384	-1.356	-0.342	-1.080
35% asymmetry	0.025	0.048	-0.416	-0.419	0.495	-0.278
50% asymmetry	0.019	0.009	-0.260	-0.758	0.233	-0.412
Femur						
Bicondylar length	< 0.001	< 0.001	-1.626	-1.011	-2.323	-2.710
Head diameter	< 0.001	< 0.001	-0.818	-0.607	0.563	-0.334
Head diameter vs. length	< 0.001	< 0.001	1.429	0.261	2.661	0.761
50% J vs. BML	< 0.001	< 0.001	0.516	-0.191	-0.851	0.686
50% I_x vs. I_y	0.078	0.121	1.314	2.280	1.664	1.772
80% I _{max} vs. I _{min}	< 0.001	< 0.001	-0.197	0.231	1.016	-0.265
Tibia						
50% I _{max} vs. I _{min}	< 0.001	< 0.001	1.293	1.026	2.162	0.730

Tabe S12 (cont.):

- ¹ Given the small sizes and frequently non-normal distributions of the comparative samples, the p-values are from Kruskal-Wallis non-parametric tests. The bivariate comparisons are based on the distributions of the individual deviations from the reduced major axis lines through the pooled sample (not including the few southwest Asian specimens). The 5-sample comparisons include the small southwest Asian sample; the 4-sample comparisons do not.
- ² The Ein Gev 1 Z-scores are their deviations from each comparative sample's mean, divided by the sample's standard deviation. Note that they are approximate, given the variable normalities and sizes of the comparative samples' distributions.
- ³ The comparative samples are European earlier Upper Paleolithic (EUP), European late Upper Paleolithic (LUP), northeast African Later Stone Age (NEA), and northwest African Later Stone Age (NWA), plus the southwest Asian Epipaleolithic.

Table S13. Southwest Asian Upper Paleolithic comparative cross-sectional geometric parameters. Right/left values are provided for the Ohalo 2 right and left femora and tibiae.

	Kharaneh I^1	Mataha F-81 ²	Nahal Ein Gev 1	Neve David 1	<i>Ohalo 2</i> (<i>Rt/Lt</i>) ³
Humerus Rt					
35% J/I _p		8881	3921		13216
50% I _{max}	5153	7510	3210	10449	9666
$50\% \ I_{min}$	3565	4423	2207	6149	6214
50% J/I _p	8718	11933	5417	16598	15881
Humerus Lt					
35% J/I _p		6690	3310		8941
50% I _{max}	9116	5234			5925
$50\% \ I_{min}$	5817	3114			3939
50% J/I _p	14933	8348			9864
Femur					
50% I _x		20148	18328	23848	47715/43365
50% I _y		16746	14981	20129	25000/24777
50% J/I _p		36894	33308	43977	72715/68142
80% I _{max}		25569	22960	43404	39119/39419
$80\% \ I_{min}$		13089	12779	22965	23276/22572
Tibia					
50% I _{max}		26409		23393	34698/31768
$50\% \ I_{min}$		8791		6237	11381/10717

Table S13 Cont.

¹ The Kharaneh 1 humeral midshaft second moments of area were estimated from the published (Rolston, 1982) maximum and minimim midshaft diameters (right: 19.0 and 16.0; left: 22.5 and 18.0) using least squares regressions based on a pooled Eurasian Late Pleistocene humeral sample providing both cross-sectional geometric parameters and diameters (ln(I_{max}) = 3.090 x ln(MaxDia) + 0.386 x ln(MinDia) – 1.62, n = 80, r² = 0.879, and ln(J/I_p) = 2.590 x ln(MaxDia) + 0.836 x ln(MinDia) – 0870, n = 83, r² = 0.862 respectively); I_{min} = J – I_{max} (see Sparacello et al., 2016). The Late Pleistocene sample has consistent percent cortical areas, which often differ from Holocene ones, making these regression equations more appropriate for the Kharaneh 1 humeri..

² Mataha F-81 data from Stock et al. (2006) and Stock (pers. comm.).

³ Trinkaus (2018).

Europe EUP	Europe LUP	NE Africa	NW Africa		
Barma Grande	Arene Candide	Nazlet Khater	Afalou		
Bausu da Ture	Arancio	Sahaba	Taforalt		
Caviglione	Bichon	Wadi Halfa			
Cro-Magnon	Cap Blanc				
Dolní Věstonice	Chancelade				
Grotte des Enfants	Climente				
Mittlere Klause (Neuessing)	Continenza				
Mladeč	Grotte-des-Enfants				
Ostuni	Farincourt				
Paglicci	Les Forges (Bruniquel)				
Pataud	Lafaye (Bruniquel)				
Paviland	Laugerie Basse				
Pavlov	La Madeleine				
Předmostí	Oberkassel				
La Rochette	Peyrat				
Sunghir	Le Placard				
Veneri (Parabita)	Rochereil				
Willendorf	Romanelli				
	Romito				
	St. Germain-la-Rivière				
	San Teodoro				
	Tagliente				
	Villabruna				

Table S14. Upper Paleolithic / Later Stone Age sites from Europe and northern Africa

 providing comparative data; see Materials for southwest Asian comparative specimens.

SI References

Arensburg. B., 1977. New Upper Palaeolithic human remains from Israel. Eretz-Israel 13, 208-215.

- Bräuer, G., 1988. Osteometrie. In: Knussman, R. (Ed.) Anthropologie I. Fischer Verlag, Stuttgart, pp.160-232.
- Rolston, S.L., 1982. Two prehistoric burials from Qasr Kharaneh. Annu. Dept. Antiquities, Hashemite Kingdom Jordan 26, 221-229.
- Shang, H., Trinkaus, E., 2010. The Early Modern Human from Tianyuan Cave, China. Texas A&M University Press, College Station TX.
- Sparacello, V.S., Villotte, S., Shackelford, L.L., Trinkaus, E., 2017. Patterns of humeral asymmetry among Late Pleistocene humans. C. R. Palevol 16, 680-689. doi.org/10.1016/j.crpv.2016.09.001.
- Stock, J.T., Pfeiffer, S.K., Chazan, M., Janetski, J., 2006. F-81 skeleton from Wadi Mataha, Jordan, and its bearing on human variability in the Epipaleolithic of the Levant. Am. J. Phys. Anthropol. 128, 453-465. doi.10.1002/ajpa.20163.
- Trinkaus, E., 2018. The paleopathology of the Ohalo 2 Upper Paleolithic human remains: A reassessment of its appendicular robusticity, humeral asymmetry, shoulder degenerations and costal lesion. Int. J. Osteoarchaeol. doi.10.1002/oa.2640.