Morphological and phylogenetic analyses of three Phytopythium species (Peronosporales, Oomycota) from Brazil

Ana Lucia de JESUS*, Danilo Reis GONÇALVES, Sarah Cristina Oliveira ROCHA, Agostina Virginia MARANO, Gustavo Henrique JERÔNIMO, José Ivanildo DE SOUZA, Marcela Castilho BORO & Carmen Lidia Amorim PIRES-ZOTTARELLI

Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stéfano 3687, 04301-902 São Paulo, SP, Brazil

Abstract – We analyzed the morphology and phylogenetic placement of six isolates of Phytopythium belonging to P. helicoides, P. palingenes and P. vexans that were isolated from water bodies and substrates used for hydroponically grown crops. The molecular data are from the partial large subunit and the complete internal transcribed regions of the ribosomal DNA. These three species are characterized by the presence of ovoid to globose zoosporangia with papillae, internal proliferation as in Phytophthora and mode of zoospore discharge as in Pythium. All isolates showed high morphological and phylogenetic similarity with members of the Clades II and III of Phytopythium. In this paper, Phytopythium palingenes is included for the first time in phylogenetic analyses and our ITS and LSU phylogenies indicated that Aquaperonospora taiwanensis is a synonym of Phytopythium helicoides.

Aquaperonospora / ITS / LSU / phylogeny / taxonomy

INTRODUCTION

The genus Phytopythium (Peronosporales sensu lato, Beakes et al. 2014) was described by Bala et al. (2010) with P. sindhum A.M. Lodhi, Shahzad & Lévesque as the type species. Members of this genus are inhabitants of terrestrial, fresh and estuarine environments where they play key roles as saprophytes or plant pathogens, causing disease in a large number of agricultural crops (Baten et al. 2015). Although many phylogenetic analyses (e.g. Lévesque & de Cock 2004; Villa et al. 2006; Marano et al. 2014a) evidenced that members of the ex Pythium Pringsh. clade K needed to be transferred to Phytopythium, it was only recently that de Cock et al. (2015) made the formal new combinations. So far, 17 species are included in Phytopythium. These species are organized in three monophyletic clades: Clade I, the largest, composed by 12 known species; Clade II with P. chamaephyphon (Sideris) Abad, de Cock, Bala, Robideau, Lodhi & Lévesque and P. helicoides (Drechsler) Abad, de Cock, Bala, Robideau, Lodhi & Lévesque and one potentially new species, and Clade III with P. curcubitacearum S. Takim and P. vexans (de Bary) Abad, de Cock, Bala, Robideau, Lodhi & Lévesque (Baten et al. 2014, 2015), although, P. cucurbitacearum was considered to be invalid due to the absence of Latin diagnosis when originally described (de Cock et al. 2015).

* Corresponding author: analuciajesus@hotmail.com
Phytopythium is characterized by the presence of ovoid to globose sporangia with papillae (except for P. vexans), internal proliferation which resembles Phytophthora and the type of zoospore discharge as in Pythium: a vesicle is formed outside the sporangia to where the undifferentiated protoplasm moves through a tube (Bala et al. 2010, Baten et al. 2015). Once in there, the zoospores are delimited and start moving outside once the vesicle wall disappears (van der Plaats-Niterink 1981). In the case of Phytopythium kandeliae (H.H. Ho, H.S. Chang & S.Y. Hsieh) Thines, the zoospores are developed partly inside the sporangium and partly inside the vesicle (Marano et al. 2014b).

During two different studies in São Paulo State, Brazil, we identified three Phytopythium species (P. helicoides, P. palingenes (Drechsler) Abad, de Cock, Bala, Robideau, Lohdi & Lévesque and P. vexans) based on morphology and phylogenetic analyses. In addition, Phytopythium palingenes is preserved in culture, sequenced and included for the first time in phylogenetic analyses.

MATERIALS AND METHODS

Isolates

The six isolates analyzed in this study (Table 1), were deposited in the culture collection (“Coleção de Culturas de Algas, Cianobactérias e Fungos do Instituto de Botânica – CCIBt”, São Paulo, SP, Brazil). CCIBt 3981, CCIBt 4069 and CCIBt 4101 were originally isolated from fresh and brackish water collected at “Parque Estadual da Ilha do Cardoso” (PEIC), Cananéia city, southern coast of São Paulo state, in August and November 2012. CCIBt 4103, CCIBt 4104 and CCIBt 4097 were isolated from substrates used in hydroponically grown crops in Embu-Guaçu and Itapecerica da Serra, São Paulo state, in September 2014.

Laboratory analysis

In the laboratory, aliquots (30 mL) of water samples collected were plated and baited with Sorghum sp. seeds and pieces of onion (Allium cepa L.) skins (Sparrow 1960, Milanez 1989). In the case of substrate samples, 5 g were placed in

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Isolate Origin</th>
<th>GenBank Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N° CCIBt</td>
<td>Samples</td>
</tr>
<tr>
<td>Phytopythium palingenes</td>
<td>3981</td>
<td>Water</td>
</tr>
<tr>
<td>Phytopythium vexans</td>
<td>4069</td>
<td>Water</td>
</tr>
<tr>
<td>Phytopythium vexans</td>
<td>4101</td>
<td>Water</td>
</tr>
<tr>
<td>Phytopythium vexans</td>
<td>4097</td>
<td>Substrate</td>
</tr>
<tr>
<td>Phytopythium helicoides</td>
<td>4104</td>
<td>Substrate</td>
</tr>
<tr>
<td>Phytopythium helicoides</td>
<td>4103</td>
<td>Substrate</td>
</tr>
</tbody>
</table>
Phytopythium species (Peronosporales, Oomycota) from Brazil

a Petri dish together with 30 ml of autoclaved reverse-osmosis water and baited with the same baits. Gross cultures were incubated in an acclimatized room (21°C). After 4-7 days of incubation, baits were observed under the microscope and the specimens of *Phytopythium* isolated. The isolates were purified on CMA (corn meal agar) medium (Fuller & Jaworski 1987).

DNA extraction, PCR and sequence amplification

For DNA extraction, the isolates were cultivated initially onto solid medium with 0.20 gL⁻¹ of each streptomycin sulphate and penicillin G as antibiotics. A small piece of agar with mycelium from the pure culture was transferred to Erlenmeyers containing 50 mL of MP₅ liquid medium (maltose-peptone) prepared with autoclaved reverse-osmosis water. After incubation for 5-10 d at 21°C, the mycelium was transferred to 2.0 mL microfuge tubes in order to obtain mycelial pellets with enough biomass for DNA extraction. DNA genomic extraction followed the protocol described in the “PureLink Genomic DNA Kit” (Invitrogen™). Electrophoresis was performed using 1% (p/v) agarose gel.

The partial LSU and complete ITS1-5.8S-ITS2 (rDNA) region, were amplified using the primers LR0R/LR6-O (Riethmüller et al. 2002) and UN-up 18S42/UN-up 28S22 (Robideau et al. 2011) respectively. DNA was amplified with the PCR SuperMix kit (Invitrogen®) for a final volume of 25 µl in a C1000 Touch™ Thermal Cycler Bio-Rad. The PCR amplification technique was performed following the conditions described by Marano et al. (2014b). Amplicons were purified with AxyPrep PCR Clean-up kit (Axygen®). PCR products were analyzed by electrophoresis on a 1% agarose gel, and stored frozen at –20°C. Sequencing was performed in an ABI 37300 DNA Analyser (Life Technologies™). Assembly of contigs and correction of ambiguous bases were manually edited using the program Sequencher™ version 4.1.4.

Phylogenetic analyses

LSU and ITS rDNA sequences were compared against BLASTn. Oomycete sequences from this study were deposited at GenBank (http://www.ncbi.nlm.nih.gov) and are shown in the Table 1. For phylogenetic reconstruction, the LSU and ITS rDNA sequences of the isolates were compared with published sequences of other *Phytopythium* species deposited in GenBank, using *Pythium takayamanum* as outgroup. The new species *Aquaperonospora taiwanensis* described by Ko et al. (2010) was included in this analyses due to morphological similarities with *Phytopythium* species. Sequences were aligned using MAFFT version 7 (Kazutaka & Daron 2013), and the ambiguously aligned characters removed manually. The Maximum Likelihood (ML) phylogenies were reconstructed with MEGA version 6 (Tamura et al. 2013) using the best model for nucleotide substitution and branch support based on 1,000 bootstrap pseudo-replicates.

Morphology

Sexual and asexual structures of the isolates were characterized and measured once the pure cultures were obtained. Identification was according to van der Plaats-Niterink (1981) and the original descriptions of the species.
Salinity tests

Since one of the isolates (CCIBt 4069) was collected in water with 0.05% of salinity, tests were performed in order to characterize the growth of the isolates at different salinities. The growth (colony diameter) of the isolates were measured on solid CMA culture medium prepared using different dilutions of reverse-osmosis water and filtered and autoclaved seawater to obtain the salinities: 0.0 (without seawater), 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% (only seawater). Dishes were incubated at 23°C for 48 h and the diameters of the colonies measured with a millimeter rule.

RESULTS

Phylogenetic analyses

We used a total of 27 sequences from 20 species, including the outgroup Pythium takayamum (CBS 121.492 and NBRC 104223) for the LSU rDNA analysis. In the case of the ITS rDNA, 43 sequences from 21 species, including the outgroup (CBS 121.492 and 2D5S071) were used. Maximum Likelihood trees (Figs 1 and 2) showed three major clades (Clades I-III), which are all moderately to well-supported in both LSU and ITS phylogenies (Clade I: 99% and 69% of bootstrap support in LSU and ITS, respectively; Clade II: 100% in both LSU and ITS; and Clade III: 99% and 100% in LSU and ITS, respectively). Our Phytopythium isolates are placed in Clades II and III. Phytopythium palingenes is included for the first time in phylogenetic analyses and grouped in Clade II together with P. helicoides and P. chamaeypohon. The three P. vexans isolates of this study, collected under different conditions (growing substrates for hydroponics, fresh and brackish water) were placed within Clade III, clustering together with other P. vexans sequences available in GenBank.

Species descriptions and salinity tests

Phytopythium helicoides (Drechsler) Abad, de Cock, Bala, Robideau, Lodhi & Lévesque, Persoonia 34: 37. 2015.

Description: Mycelium well-developed. Zoosporangia terminal, subglobose, ovoid, 25.0-42.5 × 10.0-37.5 (av. 35.6 × 24.0) μm, proliferating internally or forming secondary sporangia on branches originated just below the septum of the primary ones. Encysted zoospores, spherical, 7.5-12.5 μm diam. (av. 10.5 μm), discharge tubes apical, differentiated into an evanescent vesicle. Sexual structures absent.

Phytopythium species (Peronosporales, Oomycota) from Brazil

Culture growth: colony pattern radiate, without aerial mycelium. Growth of the isolates after 48 h at 23°C: (i) CCIBt 4103: on CMA without salt: 8.5 cm; on CMA with 0.5% of salt: 8.5 cm; on CMA with 1.0% of salt: 6.6 cm; on CMA with 1.5% of salt: 5.9 cm; on CMA with 2.0% of salt: 5.6 cm; on CMA with 2.5% of salt: 4.3 cm; on CMA with 3.0% of salt: 2.0 cm. (ii) CCIBt 4104: on CMA without salt: 3.2 cm; on CMA with 0.5% of salt: 3.0 cm; on CMA with 1.0% of salt: 2.7 cm; on CMA with 1.5% of salt: 2.1 cm; on CMA with 2.0% of salt: 2.2 cm; on CMA with 2.5% of salt: 2.0 cm; on CMA with 3.0% of salt: 0.7 cm.

Remark: The characteristics of the asexual reproduction are in agreement with the original description of Drechsler (1930, 1941) and van der Plaats-Niterink (1981). Both isolates CCIBt 4103 and 4104 did not produce sexual structures and the identification was made based on its phylogenetic placement in the ITS phylogeny (Fig. 2). According to the morphological characteristics and phylogenetic placement, Aquaperonospora taiwanensis (Ko et al. 2010) is a synonym of *P. helicoides* (Figs 1 and 2).

Phytopythium palingenes (Drechsler) Abad, de Cock, Bala, Robideau, Lodhi & Lèvesque, Persoonia 34: 37. 2015.

Description: Mycelium well-developed. Zoosporangia terminal, subglobose, ovoid, 32.5-37.5 × 30.0-35.0 (av. 35.0 × 33.0) µm, proliferating internally or forming...
secondary sporangia on branches originating just below the septum of the primary ones. Encysted zoospores spherical 10.0-12.5 (av. 11.0) µm diam., discharge tubes apical, differentiated into an evanescent vesicle. Oogonia terminal with short or
Phytopythium species (Peronosporales, Oomycota) from Brazil

sessile peduncle, intercalar or unilaterally intercalate, subglobose, 22.5-34.5 (av. 29.0) μm diam. Antheridia 1-3 per oogonium, monoclinous or diclinous, antheridial stalks and also vegetative hyphae wrapping around the oogonial stalk in a few turns, antheridial cells cylindrical, often wavy or irregular in contour. Oospores yellowish, aplerotic, subglobose, 20.0-28.5 (av. 24.5) μm diam., 1 per oogonium, smooth-walled, wall 1.5-3.0 (av. 2.0) μm in thickness.

Fig. 3 A-F. Phytopythium helicoides. A. Zoosporangium with zoospore discharge tube. B-C. Zoospores development and discharge. D-F. Internally proliferation of the zoosporangia. Bar = 10 μm.
Culture growth: colony pattern radiate, without aerial mycelium. Growth of the isolates after 48 h at 23°C: (i) CCIBt 3981: on CMA without salt: 3.1 cm; on CMA with 0.5% of salt: 5.4 cm; on CMA with 1.0% of salt: 4.9 cm; on CMA with 1.5% of salt: 3.9 cm; on CMA with 2.0% of salt: 2.8 cm; on CMA with 2.5% of salt: 2.7 cm; on CMA with 3.0% of salt: 0.9 cm.

Remark: The characteristics of this isolate are in agreement with the original description of Drechsler (1930, 1941), van der Plaats-Niterink (1981) and Rocha et al. (2001). *Phytophthora palingenes* was originally described by Drechsler (1930, 1941) from discoloured roots of *Ambrosia trifida* L. collected near Delaplane, Virginia (USA) in August, 1926. Our specimen grew on onion skin, *Sorghum* sp. seeds and onto CMA culture medium. *P. palingenes* is strikingly similar to

![Image](image-url)

Fig. 4 A-F. *Phytophthora palingenes*. A. Mycelium with wrapping hyphae. B. Intercalary oogonium. C-D. Oogonium with antheridia wrapping around the oogonial stalk. E. Oogonia and wavy antheridial cell. F. Oogonium with cylindrical antheridial cells attached. Bar = 10 µm.
\textit{Phytopythium} species (Peronosporales, Oomycota) from Brazil

\textit{P. helicoides} in morphology, although it presents cylindrical antheridial cells, which are often wavy or irregular, while \textit{P. helicoides} has regular and non-furrowed antheridia (van der Plaats-Niterink 1981). \textit{Phytopythium palingenes} was recently transferred to \textit{Phytopythium} by de Cock \textit{et al.} (2015) based solely on morphological characteristics of the described specimens because no living culture is available in public culture collections.

\textit{Phytopythium vexans} (de Bary) Abad, de Cock, Bala, Robideau, Lodhi & Lévesque, Persoonia 34: 37. 2015.

\textbf{Fig. 5 A-F}

\textit{Phytopythium vexans}.

A-B. Zoospore development.

c. Intercalary zoosporangium with zoospore discharge tube.

d. Oogonium with monoclinous antheridium.

E-F. Oogonia with antheridia.

Bar = 10 µm.

Description: Mycelium well-developed. Zoosporangia terminal or intercalary, globose, subglobose and ovoid 25.0-37.5 × 25.0-35 (av. 29.75 × 29.37) μm. Encysted zoospores, spherical 10.0-12.5 (av. 11.75) μm diam., differentiating into an evanescent vesicle. Oogonia terminal or intercalary, ovoid or globose, 16.25-22.5 (av. 18.5) μm diam. Antheridia large bell-shaped, monoclinous or rarely diclinous, 1 per oogonia. Oospores aplerotic, 12.5-18.75 (av. 14.4) μm diam., 1 per oogonia, smooth-walled, wall 1.5 μm in thickness.

Material examined: BRAZIL. SÃO PAULO State: Cananéia: Parque Estadual da Ilha do Cardoso, Perequê river. From leaf samples of *Laguncularia racemosa* 07/ XI/2012 (0.05% salinity), on *Sorghum* sp. seeds. Leg. & det. A. L. Jesus, A. V. Marano & C. L. A. Pires-Zottarelli (CCIBt 4069, 4097, 4101).

Culture growth: colony pattern radiate, without aerial mycelium. Growth of the isolates after 48 h at 23°C: (i) CCIBt 4069: on CMA without salt: 5.8 cm; on CMA with 0.5% of salt: 6.2 cm; on CMA with 1.0% of salt: 5.4 cm; on CMA with 1.5% of salt: 4.5 cm; on CMA with 2.0% of salt: 3.5 cm; on CMA with 2.5% of salt: 2.0 cm; on CMA with 3.0% of salt: 0.7 cm. (ii) CCIBt 4097: on CMA without salt: 6.7 cm; on CMA with 0.5% of salt: 7.3 cm; on CMA with 1.0% of salt: 6.0 cm; on CMA with 1.5% of salt: 5.0 cm; on CMA with 2.0% of salt: 4.6 cm; on CMA with 2.5% of salt: 3.5 cm; on CMA with 3.0% of salt: 2.0 cm.

Remark: The characteristics of the specimens are in agreement with the description of van der Plaats-Niterink (1981). *P. vexans* was originally described by de Bary (1896), and was frequently reported from soil and plants in several countries (van der Plaats-Niterink 1981). In Brazil, it was firstly reported by Carvalho (1965), isolated of root rot of *Strelitzia* sp. Our specimen grew well on *Sorghum* sp. seeds, onion skin and onto solid CMA culture medium.

DISCUSSION

All isolates of *Phytopythium helicoides*, *P. palingenes* and *P. vexans* showed the morphological features typical of these species and clustered together with other isolates of the species in Clades II and III of Baten *et al.* (2015). As the result of this study, *P. palingenes* is again available in culture, its sequences deposited in GenBank and is included for the first time in phylogenetic analyses. Although *P. palingenes* is strikingly similar in morphology to *P. helicoides*, our LSU and ITS phylogenies clearly showed that both taxa are separate species.

All morphological characteristics of *Phytopythium helicoides* matched with the description of *Aquaperonospora taiwanensis*, and as expected, both species clustered together in a well-supported clade, as shown in Figs 1 and 2. Hence, *Aquaperonospora taiwanensis* should be considered a synonym of *Phytopythium helicoides*, as previously suggested by Marano *et al.* (2014a).

The salinity tests indicated that all isolates are able to tolerate a wide range of salinities, even in the case of specimens isolated from different conditions, such
as substrate for hydroponically grown crops. Up to date, there are no studies testing the tolerance of *Phytopythium* spp. to different salinity ranges, except for *P. kandeliae* that was recently transferred from the genus *Halophytophthora* and whose ability to tolerate a wide range of salinity was already documented (Marano et al. 2014b).

Our results contribute to the knowledge of Peronosporales in general and particularly of the genus *Phytopythium* in Brazil.

Acknowledgements. We would like to thank FAPESP (“Fundação de Amparo à Pesquisa do Estado de São Paulo”) for the fellowships given to A.L. Jesus (Process N° 2013/01409-0), D. R. Gonçalves (Process N° 2014/03499-9) and for the financial support given to C.L.A. Pires-Zottarelli (Process N° 2012/50222-7), CAPES (“Coordenação de Aperfeiçoamento de Pessoal de Nível Superior”) for the fellowship and support given to A.V. Marano (“Ciência Sem Fronteiras” Program, “Atração de Jovens Talentos” DRI- CAPES Process N°. 006/2012). CNPq (“Conselho Nacional de Desenvolvimento Científico e Tecnológico”) is also acknowledged for the grant given to C.L.A. Pires-Zottarelli (Process N° 304411/2012-4).

REFERENCES

