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INTRODUCTION

Paleodiet has always been central in discussions of human 
evolution. Darwin (1871), Dart (1925), Robinson (1954), 
and others have argued to varying degrees that dietary change 
underlay hominin origins, the craniodental diversity of aus-
tralopiths, and the encephalization and stone tool use that 
characterized early Homo Linnaeus, 1758. These dietary 
shifts are often tethered to broad environmental changes, as 
exemplified by Coppens’ elegant “East Side Story”. Coppens 
(1994) argued that the formation of the East African Rift 
isolated hominins from panins, causing the former to adapt 
to food resources in increasingly open and dry environments. 
In turn, subsequent climatic change precipitated the appear-
ance of specialized herbivores – the robust australopiths – and 
generalist, tool-wielding, meat-eating Homo.

While the dawn of hominins and the emergence of Homo 
understandably garnered the most attention, arguably the 
most dramatic morphological innovation is found in the 
australopiths which evince craniodental variations linked to 
diet including the masticatory hypertrophy of the redoubtable 
“Nutcracker Man”. And while australopith diet has received 
a great deal of attention generally, Australopithecus afarensis 

Johanson, White & Coppens, 1978 in particular (as exempli-
fied by “Lucy” which will synecdochically represent the entire 
species hereafter) has received less than its due, despite being 
a logical starting point for discussions of hominin dietary 
adaptation. Australopithecus afarensis has larger cheek teeth, 
thicker molar enamel, and a more robust chewing apparatus 
than its predecessors, yet is generalized enough that it stands 
at the cusp of the extremely derived morphology of the robust 
australopiths on the one hand, and the more gracile Homo 
on the other. Australopithecus afarensis is also conceivably an 
ancestor of both lineages (Johanson & White 1979; Kimbel 
et al. 1984; Post et al. 2023) which potentially appear soon 
after Lucy and her kind disappear from the fossil record.

While a considerable fossil record for Au. afarensis has 
existed since the 1970s, there was not an abundance of dietary 
data beyond modest investigations of dental microwear that 
received relatively little attention because they either focused 
on incisal wear (Ryan & Johanson 1989) and/or were quali-
tative, low magnification studies (Puech & Albertini 1983, 
1984; Puech et al. 1983, 1986; Puech 1992). Thus, while 
debates about australopith diets were lively in the 1970s and 
80s (Jolly 1970; Wolpoff 1973; Grine 1981, 1986; Walker 
1981; Peters & Maguire 1981; Sept 1986; Grine & Kay 1988), 
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Recent findings have transformed our thinking about early hominin diets. Most notably, evidence 
from dental microwear, carbon isotopes, and dental chipping has challenged notions of hard object 
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early stage of a masticatory trend that reaches its quintessence in P. boisei, making it reasonable to 
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less attention was given to Lucy, despite it being the oldest 
recognized australopith at the time, even though Au. afarensis 
stood, and continues to stand, front and center in discussions 
of hominin locomotion (Harmon 2013; Prang 2015; Prabhat 
et al. 2021), habitat (Reed 2008; Su & Harrison 2008; Fillion 
et al. 2022), and phylogeny (Kimbel et al. 2004; Lockwood 
2013; Post et al. 2023). In this paper, we provide a brief and 
tendential discussion of research on the diet of Au.  afarensis, 
discuss challenges to this research that arose beginning in 
2006, and make the case that an analysis of Au. afarensis 
diet through a P. boisei Leakey, 1959 lens is important, even 
if, paradoxically, it could prove to be a stumbling block for 
understanding Lucy’s dietary proclivities.

WHY BOISEI?

Why should P. boisei inform our understanding of Au.  afarensis 
diet? Firstly, Au. afarensis exhibits masticatory features that 
foreshadow those seen in its likely descendant, P. boisei (Rak 
et al. 2007). In fact, based on craniodental morphology it 
could be reasonably argued that the diets of Au. afarensis 
and P. boisei were not very different, and that P. boisei’s 
more extreme adaptations simply made it better at eating 
that diet than its predecessor. We see similar evidence in 
fossil suids. For instance, Metridiochoerus Hopwood, 1926 
in northern Kenya was a nearly pure C4 consumer when its 
M3s were c. 50 mm in length, and as its descendants’ M3s 
increased to 80 mm (presumably better adapted to C4 grass 
diets), there was no increase in C4 consumption (Harris 
&  Cerling 2002). This has also been observed in eastern 
African elephants, which adopted primarily C4 diets about 
eight million years ago (mya), with major changes in hyp-
sodonty and lamellar number emerging three million years 
later (Lister 2013). Thus, while Au. afarensis and P. boisei 
have divergent masticatory systems, this does not necessarily 
translate to qualitative differences in diet.

More importantly, the occlusal dental microwear of the 
two taxa is indistinguishable (Ungar et al. 2008; Grine et al. 
2012). This is markedly different from the situation in southern 
Africa, where Au. africanus and P. robustus have overlapping 
yet distinct microwear fabrics, with the latter showing greater 
pitting than the former (Grine 1981, 1986; Grine & Kay 
1988; Scott et al. 2005; Peterson 2017; Peterson et al. 2018). 
A broad similarity in diet of Au. afarensis and P. boisei was not 
anticipated on morphological grounds and also ran counter to 
habitat-based expectations. Whereas Au. afarensis is believed 
to have inhabited highly varied environments from riparian 
forests to grasslands (Boaz 1988; Reed 2008; Su & Harrison 
2008; Su 2024), all P. boisei specimens are much younger and 
recovered from areas where grasses were prevalent (Shipman 
& Harris 1988; Reed 1997; Cerling et al. 2011b; Stewart 2014; 
Uno et al. 2016). There is also no reasonable way to attribute 
the low pitting and lack of differentiation in eastern African 
Paranthropus Broom, 1938 and Australopithecus R.A.Dart, 
1925 to environmental differences. Fossil antilopine bovids 
at eastern African sites have more complex and pitted surfaces 

than their South African equivalents, so there is no environ-
mental impediment to producing highly complex and pitted 
enamel surfaces in eastern African landscapes (Ungar et al. 
2016; cf. Strait et al. 2013). One interpretation of the virtu-
ally identical microwear of Au. afarensis and P. boisei is that, 
like the suids and elephants mentioned above, the ancestral 
and descendant taxa ate similar things, but the descendant 
taxa were better adapted to do so.

That said, carbon isotope analysis could be used to argue 
against a dietary similarity, as initial results of Au. afarensis 
and P. boisei were highly divergent (van der Merwe et al. 2008; 
Wynn et al. 2013; Cerling et al. 2011a). However, interpreting 
these data is complicated for several reasons. For one, while 
unlikely, it is plausible that two species with similar dietary 
proclivities could have different carbon isotope compositions. 
Such counterintuitive isotopic differences usually happen with 
grazing herbivores inhabiting areas with differing proportions 
of C3 and C4 grasses. A good example of this can be observed 
in South African wildebeest (Connochaetes spp.). Outside of 
winter rainfall zones, wildebeest have nearly pure C4 diets, 
but in the Western Cape they have C3-dominated diets even 
while still mowing grass (Sponheimer et al. 2003; Stowe 
& Sealy 2016). This scenario can probably be discounted 
for most Au. afarensis and P. boisei specimens analyzed to 
date as they are typically found alongside grazing herbivores 
that consumed C4, not C3, grasses (Wynn et al. 2013, 2016; 
 Cerling et al. 2011a). There is, however, one potential wrinkle 
in this interpretation that revolves around sedges; C3 sedges 
can be locally abundant even where C4 grasses predominate 
as in Kruger National Park, South Africa, today (Stock et al. 
2004; Sponheimer et al. 2005; see below). Higher growing 
season temperatures are linked to greater percentages of C4 
grasses and sedges (Teeri et al. 1980; Ehleringer et al. 1997; 
Stock et al. 2004), but the link is weaker in sedges and local 
effects (e.g. soil type and nutrients, hydrology) more greatly 
influence sedge C3/C4 distributions (e.g. Kotze & O’Connor 
2000). Thus, if Au. afarensis ate significant amounts of sedges, 
it would not only be plausible but likely that many individu-
als would have very C3 isotopic compositions. 

The plot thickens given recent results from the Omo. There, 
it was shown that Australopithecus (likely Au. afarensis) was 
not very different isotopically from P. aethiopicus (P. boisei’s 
predecessor), despite well-established morphological differences 
(Wynn et al. 2020). Essentially out of nowhere, and despite 
no evidence of morphological change, P. aethiopicus shifts to 
a C4-dominated diet (N.B., this is intraspecific and not a shift 
to P. boisei). So we are forced to ask ourselves, did Paranthro-
pus in the Omo undergo some large dietary change virtually 
overnight at 2.37 mya, or was there some fundamental change 
in the isotopic composition of the foods it had always been 
eating? Either is certainly possible, though both would seem 
unlikely from first principles. However, changes in climate, 
hydrology, soil texture, and/or nutrient availability could 
conceivably lead to large changes in the relative proportions 
of C3/C4 sedges (Li et al. 1999; Kotze & O’Connor 2000; 
Stock et al. 2004), and since these are not typically major foods 
for most mammals, such a change might not be immediately 
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obvious when looking at results for the other fauna (Negash 
et al. 2020). Following this conjecture, the high δ13C values 
(median = –0.7‰) of two 2.8 mya  Paranthropus specimens 
from Nyayanga in southwestern Kenya could reflect local 
edaphic and hydrological conditions driving differences in 
C3/C4 sedge abundance (Plummer et al. 2023), although 
alternatives are certainly possible. 

In summary, if Au. afarensis is the ancestor of P. boisei, some 
dietary continuity might be expected. Also, despite morphologi-
cal differences, Au. afarensis, like P. boisei, has been interpreted 
as a likely consumer of “nuts, seeds, and hard fruits” (Wood 
& Richmond 2000). The dental microwear of Au. afarensis 
and P. boisei is highly similar and very different from P. robustus 
from South Africa. And while some Paranthropus and Austra-
lopithecus are very different isotopically, early P. aethiopicus and 
Australopithecus from Omo are very similar. Thus, revisiting 
the diet of Au. afarensis, with a particular focus on potential 
continuity with P. boisei, seems warranted. 

One might speculate that the differences in size, shape, and 
structure of teeth between Au. afarensis and P. boisei could 
present another example of Van Valen’s (1973) “Red Queen” 
hypothesis, possibly via competition with other herbivores 
or even due to intraspecific competition. Neither species has 
shearing crests like gorillas or crenulations like orangutans 
(sensu Vogel et al. 2008) for fracturing tough vegetation, but 
P. boisei does have larger occlusal tables, increasing the area 
of the chewing platform to process more food per chew. Bite 
pressures between Au. afarensis and P. boisei were probably 
similar (Demes & Creel 1988; Eng et al. 2013) despite the 
marked differences in occlusal area. Just as Kay & Ungar 
(1997) suggested that living hominoids have longer crests 
than their Early Miocene predecessors with a similar range of 
diets, judging from their microwear, perhaps Au. afarensis and 
P. boisei have flatter teeth than modern ecological equivalents.

LUCY’S LACUNA

In the 1980s, both Au. africanus and P. robustus were lavished 
with attention given new developments in dental microwear 
which confirmed strong dietary differences between taxa as was 
suggested by morphology (Grine 1981, 1986; Grine & Kay 
1988). After this, it was widely accepted that Australopithecus 
ate fleshy fruits and leaves while Paranthropus munched on 
small hard objects. Even in the 1990s, when stable carbon 
isotope and trace element analyses were initially applied 
( Sillen 1992; Lee-Thorp et al. 1994), the focus was on South 
African australopiths because Bob Brain saw the potential of 
such chemical techniques and granted access to the fossils.

Excepting a few studies focused on microwear of the anterior 
dentition (Puech et al. 1983, 1986; Puech & Albertini 1984; 
Ryan & Johanson 1989), explicit dialog about Au. afarensis 
diet had been fairly dormant. Lucy arrived on the scene too 
late to be incorporated in Robinson’s (1954) dietary hypoth-
esis or to be explicitly dealt with in Jolly’s (1970) seed-eater 
hypothesis. However, it was generally acknowledged that its 
robust mandible and dentition, and thicker enamel compared 

to extant apes, represented the “initial functional steps that 
would eventually culminate in the far more derived, specialized 
masticatory apparatus of later hominid species, particularly 
A. boisei [P. boisei]” (White et al. 2000). Thus, it was seen as 
a step towards the “Nutcracker Man”, but not so far down 
the road that it could not have also been ancestral to Homo.

At the time, extrapolating South African australopith dietary 
inferences more or less directly to their eastern African congeners 
seemed unproblematic. For one, despite clear craniodental dif-
ferences, Au. afarensis and Au. africanus were generally regarded 
as variations on a theme – gracile australopiths – with some 
arguing that the difference between the two was insufficient 
to warrant species-level designations (e.g. Tobias 1980). Thus, 
most were comfortable with the notion that Au. afarensis 
had an Au. africanus-like diet, although given its less derived 
morphology, possibly with more emphasis on foods favored 
by chimpanzees (certainly many people [e.g. Hunt 1998] 
favored the idea of the LCA being quite chimpanzee-like at 
the time). In turn, because dental microwear was confirm-
ing notions of hard-object feeding for P. robustus, the even 
more craniodentally robust P. boisei seemed to be an obvious 
hard-object specialist (although Walker’s [1981] microwear 
study had to be overlooked in making that case). In short, 
it seemed reasonable that all  Australopithecus species shared 
a similar adaptive zone, as did all Paranthropus species. After 
all, blue widebeest (Connochaetes taurinus (Burchell, 1823)) 
and black widebeest (Connochaetes gnou (Zimmermann, 
1780)) have highly similar, although not identical, diets 
(Codron & Brink 2007) as do both species of Pan Oken, 
1816 (Hohmann et al. 2010)

ANNI CONFUSIONIS

The first real challenge to the assumption of parallel dietary 
adaptations in eastern and South African australopiths 
was a study on dental microwear published in 2006 which 
had several notable findings (Grine et al. 2006). First, the 
occlusal microwear of Au. afarensis was quite similar to that 
of Gorilla beringei (typified by few pits), and clearly differ-
ent from that of hard object feeders like tufted capuchins 
(Sapajus apella (Linnaeus, 1758)) and grey-cheeked man-
gabeys (Lophocebus albigena (Gray, 1850)) which tend to 
have highly-pitted molars. So, contrary to expectations, there 
was no evidence of Au. afarensis representing an early step 
along an australopith dietary trajectory towards hard, brittle 
food consumption. Second, the microwear of Au. afarensis 
revealed no evidence of dietary differentiation across time 
or habitats, contrary to expectations for a generalist pri-
mate. In retrospect, this publication was a major challenge 
to received wisdom that was arguably swept under the rug, 
for more congenial, if now less likely, notions. 

One interpretation of the occlusal microwear data was that 
Au. afarensis did eat hard foods as morphology suggested, but 
that these were possibly fallback foods that were eaten infre-
quently so microwear evidence was absent (Grine et al. 2006). 
While a plausible explanation, and one that was consistent 
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with conventional wisdom about australopith masticatory 
biomechanics at the time, it was not especially parsimonious 
given the study’s ample sample of 19 molars. In addition, this 
explanation effectively negates the possibility of falsifying hard-
object feeding hypotheses with occlusal microwear. Another 
response that arose, albeit initially for Au. africanus, was that 
dental microwear was unable to discern certain types of hard 
object consumption (e.g. wrong food size, wrong teeth, wrong 
habitat; Strait et al. 2009; Lucas et al. 2013). However, this 
idea was countered by evidence from modern hard object feed-
ers like sooty mangabeys (Cercocebus atys (Audebert, 1797)) 
that have highly-pitted microwear fabrics on both premolars 
and molars (Daegling et al. 2011) and by other mammals at 
hominin sites that preserve pitted teeth (Ungar et al. 2016). 
Subsequently, a study of tooth chipping showed low chip 
frequencies in Au. afarensis that appeared inconsistent with 
durophagy (Constantino & Konow 2021). Most crucially, both 
the fallback supposition and arguments that microwear does 
not consistently track durophagy are attempts to explain away 
unexpected results with negative evidence. In and of itself, 
this does not mean that these explanations are incorrect, but 
we feel it is instructive that the field seemed to prefer, at least 
for a while, explanations with so little empirical support. We 
submit that this initial study should have occasioned a deeper 
rethink of Au. afarensis than it did in practice.

Then, in 2008, the dam broke. A study of P. boisei occlusal 
microwear revealed no evidence of hard object consumption 
– “Nutcracker Man” looked like folivorous geladas (Theropithecus 
gelada (Rüppell, 1835)) or gorillas (Gorilla gorilla (Savage, 
1847)) based on the complexity of its molar microwear, and 
nothing like well-known consumers of hard and brittle foods 
(Ungar et al. 2008). In addition, a study on the carbon isotopic 
compositions of P. boisei from Tanzania revealed a high C4 
signal of the sort found in warthogs (Phacochoerus africanus 
(Gmelin, 1788)) and zebra (Equus quagga Boddaert, 1785) 
(van der Merwe et al. 2008). No extant hominoids have such 
high δ13C values, save for modern human populations that 
are almost completely dependent on C4 grasses like maize 
(Tykot 2002). The combination of dental microwear and 
carbon isotope data began to paint a picture of a hominin 
with a wholly unexpected dietary ecology, strongly hinting 
that the field’s expectations needed to be reassessed.

ADDRESSING THE C4 CONUNDRUM

Since 2008, much attention has been paid to the diet of P.  boisei, 
and little explicitly to the diet of Au. afarensis (Martínez et al. 
2016; Wynn et al. 2013 being exceptions). In studies on 
P. boisei, much of the effort has been on hypotheses to explain 
its apparent high C4 resource consumption. Such an extreme 
C4 isotopic composition has few potential causes: dedicated 
consumption of C4 monocots like grasses and sedges, eating 
animals that eat those foods, such as wildebeest and zebra, 
or consumption of less abundant and typically less-palatable 
crassulacean acid metabolism (CAM) plants that can isotopi-
cally mimic C4 consumption. 

Although some have advanced ideas about animal food 
consumption in hominins with Paranthropus-like adapta-
tions (Cachel 1975; Szalay 1975), most scholars agree that 
a high C4 signal via animal food consumption is unlikely. 
For one, if the animal foods were arthropods, this would 
have required the consumption of hundreds of thousands 
of harvester-type termites or ants per night (other termites 
and ants would not impart the needed isotopic signal; see 
 Sponheimer et al. 2005; Lesnik 2014; Phillips et al. 2021), 
and there is no evidence of adaptations for insect consumption 
in P. boisei. And to obtain P. boisei’s C4 signal from the con-
sumption of mammals is a feat that even lions have difficulty 
achieving today (Codron et al. 2007, 2016; Lee-Thorp et al. 
2007; Yeakel et al. 2009), making any invocation of hominin 
“zebravory” suspect at best. Moreover, the very evidence used 
to inveigh against a heavy monocot diet for P. boisei, namely 
its flat teeth, also makes P. boisei an unlikely consumer of 
tough animal tissues. It is easy to see why a monocot ori-
gin for the C4 signal is favored by many given that: 1) all 
mammalian herbivores with a similar isotopic composition 
eat grass; 2) grass is far more abundant on landscapes than 
grazing mammals and arthropods; and 3) monocots are less 
inclined to run away than most animal foods. 

Another wrinkle seldom entertained is the possibility that 
Paranthropus, or even australopiths in general, were tool-users 
(Susman 1988, 1998; Wood 1997; Plummer et al. 2023). 
Susman (1988, 1998) argued for tool use in robust austra-
lopiths, noting that species-level hominin-tool associations 
were inferred rather than established at different localities. 
Paranthropus was coeval with Homo in both South and eastern 
Africa, but postcranial evidence of manual elements indicating 
tool-making capacity (SKX 5016, SKX 5020) can be linked 
to P. robustus based on a probabilistic criterion (i.e., lots of 
Paranthropus fossils and very few of Homo). Susman was 
skeptical that earlier Australopithecus hands had morphologi-
cal features indicating tool-making capabilities.

The resistance to Paranthropus as tool-maker or tool-user is 
to some degree a hangover from the presumption that Homo 
should be the only hominin with tool technologies. A sec-
ond reason why tool use in “robust” australopiths is deemed 
implausible – if not ignored altogether – is the inference 
that a modest brain size, postcanine megadontia, and facial 
hypertrophy indicate a species too dim to consider strategies 
of extraoral food preparation. Szalay’s (1975) hyaena analogy 
falls apart if Paranthropus was, in fact, a scavenger but let the 
rocks do some work before ingestion. Cutting with the stone 
tool technologies of the Plio-Pleistocene probably did not 
greatly reduce the masticatory work required to process grasses 
or sedges, although it is worth noting that studies of artifact 
use wear at Kanjera South, Kenya suggested that cutting of 
grass/sedge culm and underground storage organs (USOs) was 
equally if not more important than processing animal foods 
(Lemorini et al. 2014). However, pounding of USOs (and 
possibly culm) may well have increased energetic intake (Zink 
& Lieberman 2016), and if Paranthropus was opportunistic in 
exploiting other resources (e.g. termites, USOs), tools would 
have been instrumental for accessing them. 
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The identification of the Lomekwian tool tradition 
( Harmand et al. 2015) and evidence of butchery at Dikika 
over three mya (McPherron et al. 2010) further undermines 
the principle that tool manufacture was the exclusive domain 
of Homo. There is no necessary conflict between tool use 
in Paranthropus and the hypertrophy of the masticatory 
apparatus. That lithic technology solves some foraging 
and ingestive problems is more reasonable than the idea it 
solves all of them. Gracilization of the skeleton does not 
have to be proportional to material culture innovation. 
Neanderthal robusticity is obviously not a product of some 
kind of technological regression.

Thus, from a comparative standpoint, the simplest solu-
tion to the P. boisei problem is C4 grass and/or sedge con-
sumption. Consumption of CAM plants is also possible. 
Some primates like baboons and some lemurs can eat a fair 
bit of CAM vegetation, and while this is obvious in their 
isotopic compositions (Codron et al. 2005), in no cases 
do they look like P. boisei, even in habitats where CAM 
vegetation is dominant such as the Spiny Forest of Mada-
gascar (Crowley et al. 2011). The only possible exception 
is the extinct lemur, Hadropithecus Lorenz, 1899, which 
can approach P. boisei’s δ13C values, and which arguably 
consumed CAM plants rather than grasses, although it did 
so in CAM-dominated landscapes quite dissimilar to those 
associated with mainland early hominins (Godfrey et al. 
2016). Thus, we cannot definitively rule out the possibility 
that P. boisei was a CAM specialist. After all, eponymous 
Olduvai Gorge is named after the CAM plant oldupai (now 
Dracaena hanningtonii Baker), the wild sisal plant, which 
is consumed by baboons sparingly (Barton et al. 1993; 
1% feeding time in Laikipia, Kenya, CAM Euphorbia 
represent about 5% of feeding time there). Yet, as many 
potential CAM foods are poisonous or purgatives, and are 
usually not abundant in likely hominin habitats (certainly 
not compared to C4 grasses), the consumption of CAM 
alone is unlikely to explain the high apparent C4 signal in 
P. boisei, though some combination of C4 monocots and 
CAM is plausible (see Peters & Vogel 2005).

It is worth noting that the main reason for considering 
CAM plants as a P. boisei dietary resource is the seeming 
implausibility of C4 grass consumption. The relatively 
flat occlusal surfaces of P. boisei post-canine teeth seem 
poor tools for the comminution of displacement-limited 
foods like tough grasses (Kay et al. 1978; Kay 1985). 
However, most of the available CAM vegetation is leafy 
material for which the teeth of P. boisei were purportedly 
equally unsuited. Thus, to argue that P. boisei obtained its 
C4 signal via CAM vegetation, one would face the same 
mechanical conundrum a CAM explanation was trying 
to avoid in the first place. Thus, C4 monocot consump-
tion makes sense since all extant mammalian herbivores 
with P. boisei’s carbon isotope composition eat them, they 
were very abundant in the environments of P. boisei most 
of the time (Reed 1997; Cerling et al. 2011b; Uno et al. 
2016), and because the potential alternatives offer similar 
mechanical challenges.

PESKY TEETH 
(OR A SOLUTION WITHOUT A PROBLEM?)

Many of the problems we are currently experiencing in the 
world of early hominin paleodietary studies can be distilled 
down to the fact that the behavioral and morphological signals 
do not perfectly align (e.g. Ungar et al. 2008; Smith et al. 2015; 
Sponheimer et al. 2023; Teaford et al. 2023). Paranthropus boisei 
especially, but to a certain extent all australopiths, are charac-
terized by a hypertrophied chewing apparatus with megadont 
cheek teeth and thick enamel (Wood & Richmond 2000; White 
et al. 2000; Daegling & Grine 2017). While these have been 
interpreted conventionally as indicating a durophagous diet 
(Wood & Richmond 2000; White et al. 2000), they are also 
consistent with a diet dominated by tough foods like leaves 
(Hylander 1988; Pearson & Rabenold 2011; Daegling et al. 
2011; Daegling & Grine 2017). Indeed, when comparing the 
skulls of sooty mangabeys, red colobus, and P. boisei in lateral 
profile, the similarity of P. boisei with the leaf-eating colobus 
as opposed to the hard-object feeding mangabey is striking. 
From this perspective, the need to explain away indications 
of C4 monocot consumption disappears. 

But what about those flat teeth? Australopith cheek teeth, 
especially P. boisei, are indeed relatively flat and do not have 
the high shearing crests typically observed in folivorous pri-
mates (Kay 1985). At face value, this would make it unlikely 
that any australopith ate large quantities of monocot (or 
dicot) leaf, although the seeds or USOs of such plants would 
be fair game (Hatley & Kappelman 1980; Conklin-Brittain 
et al. 2002; Laden & Wrangham 2005; Dominy et al. 2008; 
Lee-Thorp 2011; Macho 2014). The principal difficulties of 
proposing reproductive parts or storage organs to explicate 
the apparent C4 dominance in P. boisei are that: 1) they would 
likely result in pitted occlusal microwear which has not been 
observed (Daegling & Grine 1999; Theropithecus I.Geoffroy 
Saint-Hilaire, 1843 eats grass seeds and USOs without pit-
ted molar microwear but the bulk of its diet is grass leaves 
which apparently dominate its microwear [Shapiro et al. 
2016]); 2) they are unlikely given the lack of tooth chipping 
in P. boisei (Constantino & Konow 2021); and 3) such high 
δ13C values would be difficult to achieve in practice by eating 
such fare. Grass seed is not always available, and even mole 
rats, which specialize on USOs in areas with C4 grasses, do 
not typically have such high δ13C values (Robb et al. 2012, 
2016). Thus, while consumption of these foods by P. boisei, 
and australopiths generally, is not only possible but even prob-
able, the likelihood that they alone could engender the high 
C4 signature seen in P. boisei seems remote. Moreover, there 
has been a tendency to underestimate the indigestible frac-
tion of wild tubers and other USOs (Schoeninger et al. 2001; 
Paine et al. 2019), such that the energetic return (without 
fire), given gut fill constraints, would probably be insufficient 
without massive supplementation of high-energy, low-fiber, 
foods which are rarely C4 resources. The chief virtue of the 
USO argument is that it retains conventional thinking about 
P. boisei’s masticatory morphology and durophagous diet – one 
simply replaces seeds and nuts with hard items such as corms 
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(Dominy et al. 2008; Macho 2014). Still, Smith et al. (2015) 
question whether or not corms could have driven the mastica-
tory hypertrophy observed in Paranthropus given that their 
elastic moduli are orders of magnitude lower than those of 
seed and nut shells. While we acknowledge that USOs could 
account for P. boisei’s high δ13C values, although impediments 
to this interpretation are substantial, our focus here is alterna-
tives to prevailing notions of australopith durophagy given 
challenges from multiple lines of evidence.

The central problem is that while it would not be impos-
sible for P. boisei to obtain its observed carbon isotope 
composition without eating monocot leaf or pith, it would 
be extraordinarily difficult to do so. And given the likely 
superabundance of C4 leaf/pith in australopith habitats, it 
is very easy to invoke their consumption as a solution to the 
C4 problem. But would that have been plausible? Mammals 
like the panda (Ailuropoda melanoleuca (David, 1869)) are 
suggestive in this regard. The giant panda eats primarily 
bamboo and its masticatory apparatus shows many conver-
gences with Paranthropus including a flattened face, flaring 
zygomatic arches, expanded temporalis muscles, robust man-
dibles, and, by ursid standards, flat, megadont molars and 
premolars (Du Brul 1977). Such convergence could bespeak 
similar diets, or at least diets that pose similar mechanical 
demands. Pandas do crush hard bamboo, but there can be no 
denying that their predominant masticatory challenge is the 
consumption of enormous quantities of fibrous vegetation 
which they digest very poorly (Dierenfeld et al. 1982; Senshu 
et al. 2007; Sims et al. 2007; Finley et al. 2011). Their teeth 
are poorly suited for the reduction of tough foods (Davis 
1964), so they chew each mouthful desultorily while eating 
constantly – they favor bulk consumption over digestive effi-
ciency. Other consumers of bamboo (and other monocots), 
such as the bamboo lemurs of the genus Hapalemur, have 
a diametrically opposed digestive strategy. They use classic 
folivore cheek teeth to efficiently break down foods which 
they digest impressively over an extended period (Overdorff 
& Rasmussen 1995; Campbell et al. 2004).

Paranthropus boisei diet is, from a Sherlock Holmesian per-
spective, a five-pipe problem. Its teeth would not be remark-
able if it were a durophage, but while durophagy cannot be 
excluded, hard foods were probably not a dominant compo-
nent of its diet. Its microwear would be unexceptional if it 
were an amiable muncher of leaves, but its occlusal relief is 
atypical for folivores. Its isotopic composition is typical for 
grazing savanna mammals, but once again, occlusal morphol-
ogy militates against such an interpretation. There is no living 
mammal that demonstrates its combination of morphology, 
microwear, and carbon isotopic composition.

ET TU, LUCY: A HYPOTHESIS

So what does this discussion of P. boisei mean for Au. afarensis? 
Clearly these taxa pose common interpretive problems. Osten-
sibly, in both cases, morphological and behavioral approaches 
of paleodietary retrodiction give different signals, and some 

of those behavioral signals (especially occlusal microwear) 
are most consistent with a diet of tough foods (or at the very 
least not hard ones). Conventionally speaking, however, 
the problems are less severe for Au. afarensis: it appears less 
specialized (and it is certainly less morphologically-derived) 
than P. boisei, and its megadontia, thick enamel, and robust 
masticatory package might prove beneficial for withstanding 
the repetitive loading associated with most tough diets. The 
carbon isotopic data for Au. afarensis are also consistent with 
a diet of displacement-limited foods such as leaves or pith, 
as is the remarkably high variation in its δ13C values (Wynn 
et al. 2013). In more forested areas, tree leaves, terrestrial 
herbaceous vegetation, and C3 monocots would be abundant 
leading to the predominantly C3 signal of most individuals. 
In contrast, in more open and/or wetland environments, C4 
grasses and sedges would be regularly encountered, consist-
ent with the δ13C values of others. Indeed, the δ13C values of 
Au. afarensis are what one would expect for hominins eating 
leaf/pith in their known habitats regardless of their photo-
synthetic pathway (Boaz 1988; Reed 2008).

Consequently, problems with our interpretation of dietary 
data for Au. afarensis are twofold. The first is that Lucy and her 
kin come off as less chimp-like than many envisioned, although 
this is perhaps less shocking now than it was in the past (e.g. 
Sayers & Lovejoy 2008; White et al. 2015). The second is that 
P. boisei, with its bizarre “Nutcracker Man” combination of 
morphology, microwear, and isotopic composition necessitated 
serious consideration of outré diets dominated by corms, rhi-
zomes, seeds, and/or CAM plants. And if P. boisei had a diet 
comprising such unexpected things, it stands to reason that 
Au. afarensis had taken a step or three down that dietary path. 
So without P. boisei, modern discussions of Au. afarensis diet 
might have followed a different and simpler course.

Before the anni confusionis, a reasonable vision of Au. afarensis 
could be derived from extant hominoid ecology, comparative 
morphology, and behavioral data available for Au. africanus. 
One version of this might be labeled the chimpanzee-plus 
model, meaning that Australopithecus would have been simi-
lar to modern chimpanzees in savanna environments, except 
that Lucy would have exploited more foods available in the 
open portions of her habitat (Sponheimer et al. 2007). By 
analogy, this would be something like the situation that exists 
around the Tana River today, where the Tana River Mangabey 
(Cercocebus galeritus Peters, 1879) is a dietary generalist but is 
nevertheless endangered because its diverse diet is limited to 
what is found in the gallery forest (Wahungu 1998). Sympatric 
Papio Erxleben, 1777, playing the ecological doppelgänger of 
Au. afarensis in this scenario, has a diet that overlaps with the 
mangabeys seasonally, but when needed it can utilize resources 
from more open portions of the landscape (Wahungu 1998; 
Bentley-Condit & Power 2018). So Papio thrives, while 
 Cercocebus galeritus limps toward oblivion. In such a scenario, 
if Pan and Australopithecus were sympatric in “savanna” type 
environments, we would expect Australopithecus to outcompete 
its chimpanzee cousins. Chimpanzees do not suffer from the 
extreme habitat limitations of Tana River mangabeys;  however, 
in savanna environments, they greatly extend their home 
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ranges and have low densities despite having larger party sizes, 
most likely as an anti-predator strategy (Moore 1996; Pruetz 
& Bertolani 2009; Giuliano et al. 2022). This long-distance 
ranging is at least partly because savanna chimpanzees have 
diets quite similar to those of forest chimpanzees (fruit and tree 
leaves; Hohmann et al. 2010), and this means most of their 
habitat is of limited use to them dietarily – particularly the 
ubiquitous C4 grasses (Schoeninger et al. 1999;  Sponheimer 
et al. 2006). Australopithecus, with its ability to utilize the 
C4 vegetation that dominates these environments, would 
not have had to range so far afield for food. Thus, it would 
be difficult to envision Pan in any abundance in areas once 
occupied by Australopithecus. This scenario works admirably 
with available dietary data for Au. africanus.

But what scenario can be envisioned to explain current 
paleodietary data for Au. afarensis, as well as its possible 
descendant P. boisei? If we imagine environmental change, 
competition, or both leading the ancestors of Au. afarensis 
to use more open portions of the landscape, woodlands, or 
perhaps river courses, fruits would have generally been less 
abundant in these areas (Copeland 2009). Monocots, in 
contrast, would have been ubiquitous. These hominins might 
have broken down monocots with hard stems to extract pith, 
for which their relatively flat teeth and a powerful mastica-
tory apparatus were well-suited. The pith or other vegetative 
material would have been chewed to access readily extract-
able nutrients and the quid would have been expectorated 
(at least for especially refractory foods). Masticatory cycles 
might have increased if more food was consumed, but the 
soft tissue digestive apparatus would have been less taxed 
because smaller quantities of fibrous material would have 
been swallowed. This scenario would be consistent with 
what we see in Au. afarensis hard tissue anatomy and micro-
wear, and the expected result might be a predominantly 
C3 isotopic signature. However, in areas with large stands 
of Cyperus L. or other C4 sedges, C4 foods would become 
more important. In some ways, this is not so different from 
what is seen in chimpanzees, orangutans (Pongo spp.), and 
modern humans who also spit out highly indigestible dietary 
components after extracting readily digestible components 
(cell solubles) (Tutin et al. 1997; Remis & Dierenfeld 2004; 
Dominy et al. 2008; van der Merwe et al. 2008; Vogel et al. 
2008; Yamagiwa & Basabose 2006).

Under the scenario above, further climate and environmen-
tal change could explain the eventual rise of P. boisei with its 
more derived masticatory apparatus (perhaps we can call it 
Australopithecus-plus?). As environments opened, and perhaps 
along lake shore environments with extensive stands of sedges 
and/or grasses, the same basic diet would result in an increas-
ingly C4 isotopic composition with only a marginal impact 
on occlusal microwear. The mechanical requirements might 
not change much, but the dental battery might continue 
to become optimized, as in the elephant and suid examples 
above. In fact, Ungar & Hlusko (2016) argued that for a 
hominoid, the easiest evolutionary path to becoming a tough 
and fibrous food specialist is to increase occlusal surface size 
and lay down thicker enamel. This might also be useful if a 

more open environment led to more grit-laden plant food 
thus increasing tooth wear. Once again, the teeth would be 
well-suited for breaking down hard stems, and their thickly 
enameled flat teeth might impose few barriers for a taxon 
that does not seek to break down more refractory foods. In 
a way, this is analogous to the situation with pandas, except 
that pandas expel long undigested chunks of vegetation 
via the fecal route. It is also noteworthy that P. boisei has a 
calcium isotope ratio that is very different from other early 
African hominins (Martin et al. 2020), but very similar to 
those observed in Gigantopithecus blacki von Koenigswald, 
1935 and pandas (Hu et al. 2022). While interpretation of 
calcium isotope data remains challenging, this clustering of 
two taxa that eat (or ate) bamboo to greater or lesser extents 
(giant pandas and Gigantopithecus von Koenigswald, 1935; 
Daegling & Grine 1994) and a hominin for which dietary 
proxy data is suggestive of tough food consumption is remark-
able, especially in light of masticatory convergences in all 
three taxa (White 1975).

CONCLUSIONS

As our colleague Dr Bernard Wood once opined, “If we can’t 
figure out what a morphological hyperspecialist like P. boisei 
ate, we have no hope of figuring out what any of the more 
generalized hominins ate”. Just so. We have argued that P. boisei 
is the key to unlocking our understanding of australopith diet 
in a general sense (e.g. Sponheimer et al. 2013, 2023). The 
reasons for this are many. When stepping back, it is easy to 
see the highly-derived dentognathic morphology of P. boisei 
as the quintessence of a trend towards dietary specialization 
that begins with the earliest australopiths. By this logic, P. boi-
sei would be doing more of the same, or the same but better 
than its predecessors. This has further empirical support in 
the significant relationship between larger cheek teeth and 
apparent C4 consumption in the australopiths – more C4 cor-
relating with a larger dental battery (Sponheimer et al. 2013). 
A further inducement to focus on P. boisei was that questions 
about its diet should be readily approached because its mas-
ticatory morphology is so extreme, and because its isotopic 
composition and dental microwear are only compatible with 
a limited set of potential foods. Given its likely descendant 
status with Au. afarensis, the case was even stronger that the 
diet of P. boisei should prove revelatory.

And perhaps it has been. While there is no simple solution 
to the problem posed by the multifarious dietary data, one 
scenario that is broadly consistent with current datasets is that 
a purported Au. afarensis-P. boisei lineage began consuming 
fibrous vegetation more frequently, but with a possible focus 
on material that would be wadged and expectorated. While this 
diet would require intense and regular chewing, it might not 
require the occlusal relief that is usually a hallmark of tough 
food consumption among extant primates (Kay et al. 1978; 
Kay 1985). As discussed previously, the dentition of these 
australopiths, while suboptimal for a diet of displacement-
limited foods, might have been the evolutionary path of least 
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resistance given the relatively flat teeth of their forebears, the 
ease of increasing enamel thickness, and the relative difficulty 
of making changes to crown morphology (Ungar & Hlusko 
2016). This scenario had the additional advantage of being 
better able to explain the quick change towards apparent C4 
consumption witnessed in the Omo hominins with a much 
smaller C4 change in other fauna: perhaps hominins tracked 
vegetation at or near the water interface where changes in 
hydrology, soil texture, or nutrient availability led to large 
changes in C4 abundance, whereas most other mammals 
tracked subtler changes in gross C4 grass availability in open-
ing environments (Negash et al. 2020). Perhaps the closest 
analogy to this today is with the marsh and swamp-loving 
sitatunga (Tragelaphus spekii Speke, 1863). They typically 
have diets of greater than 50% monocots, and yet can have 
δ13C values indicating pure C3 consumption in forests, but 
in more open environments, can have δ13C values in the 
P. boisei range (Cerling et al. 2003; Sponheimer et al. 2003). 
Notably, there is abundant evidence of water-loving plants 
and animals at most A. afarensis and Paranthropus sites in 
eastern Africa (Stewart 2014).

An irony in this, however, is that it might have been easier 
to generate such hypotheses if we knew nothing about 
P.  boisei. For instance, Picq (1990) argued that the anterior 
tooth wear and anatomy of Au. afarensis were consistent with 
a diet requiring more chewing than that of a chimpanzee, 
and which would have included more savanna resources 
and leafy vegetation/abrasive foods. The main difference 
between this interpretation and the hypothesis presented 
here is that Picq (1990) saw USOs as important foods for 
Lucy and her ilk, which now appears less likely given occlusal 
microwear and dental fracture data. It was the seeming 
improbability of P. boisei, with its much flatter teeth, and a 
diet dominated by tough vegetation that suggested some-
thing strange was afoot: for instance, high consumption of 
tubers or nuts without leaving traces in dental microwear 
or tooth fracture frequencies. So what did P. boisei bring to 
the table? Trouble, but possibly the good kind.

Indeed, it could be argued that P. boisei was the straw that 
broke the durophage’s back, and prompted some to cast off 
the vestiges of nutcracker “orthodoxy” when it comes to 
deciding what is special about australopiths in the realm 
of diet. Of course, for many, this will be a step too far, but 
it is consistent with Kay’s (1981) dentognathic survey of 
Miocene hominoids which established that thick enamel 
and robust mandibles (large corpora) are plesiomorphic, 
such that these characters do not explain the emergence of 
australopiths. This also means that durophagy as the initial 
or enduring dietary strategy of australopiths is difficult to 
justify: indeed, P. robustus might be the only committed hard-
object specialist among them, and as such an outlier rather 
than a paradigmatic example of the radiation. Furthermore, 
we only have dietary proxy data for P. robustus from a highly 
restricted area of the South African highveld, so we cannot 
be certain that durophagy was its constant companion or 
something forced upon it in an idiosyncratic local habitat 
hosting plants of comparatively poor nutritional quality 

(Paine et al. 2019). Regardless, what is novel, late in the 
australopith radiation, is postcanine megadontia and a cor-
related change in adductor mass to maintain sufficient bite 
pressures (Demes & Creel 1988; Eng et al. 2013). 

Robinson’s (1954) take, prior to OH 5’s discovery, was that 
Paranthropus was a “herbivore” in contrast to the omnivo-
rous Au. africanus. Only later, with the field’s elevation of 
 Ramapithecus and the accumulation of eastern African Paran-
thropus did the idea of durophagous adaptation fully calcify 
into the explanans of early hominin feeding ecology. The 
newer ecological data for P. boisei make it defensible, or even 
necessary, to imagine other dietary possibilities for Lucy’s kin. 
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