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ABSTRACT
Morphologically diverse trace fossils belonging to different ichnogenera share similar characteristics in 
that their producers: 1) sequester organic-rich sediment from the seafloor, or from suspension when 
plenty of benthic food is available; 2) transfer it downward; 3) stow it in a burrow; and 4) utilize it 
later during times when benthic food availability is restricted. Organic matter delivery to the seafloor 
is subject to pronounced seasonal fluctuations. Storage is optimal if the cache is located in anoxic 
sediment and beyond the reach of competing burrowers. Since the most reactive (i.e., nutritional) 
organic substances become oxidized first, refractory organic matter is enriched deeper in the substrate. 
If, however, reactive organic matter is brought in contact with refractory organic matter, priming 
may take place. Priming refers to enhanced microbial remineralization of refractory organic matter, 
typically up to 30%. This process is especially efficient where fresh organic matter is transferred into 
anoxic deposits. In addition, if an open burrow is produced within anoxic sediment, microbial ac-
tivity is stimulated by the steep geochemical gradient between anoxic host sediment and oxygenated 
water in the lumen. The microbes and/or their metabolic products may also serve as food source. 
Consequently, stowing behaviour is an efficient nutritional and survival strategy for animals living in 
settings that experience strongly fluctuating delivery of benthic food, by conserving food resources 
during times of plenty to be used when starving.
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RÉSUMÉ
Sequestrichnia – une catégorie éthologique de traces de fossiles marins signalant la collecte et le stockage 
de matériel nutritionnel dans des terriers.
Les ichnofossiles morphologiquement diversifiés appartenant à divers ichnogenres partagent des carac-
tères comparables en ce sens que leurs producteurs : 1) séquestrent des sédiments riches en matières 
organiques du fond marin, ou bien en suspension lorsque la nourriture benthique est abondante ; 
2) le transfèrent vers le bas ; 3) les stockent dans un terrier ; et 4) les utilisent plus tard lorsque la 
disponibilité de nourriture benthique est limitée. L’apport de matière organique au fond de la mer 
est soumis à des fluctuations saisonières prononcées. Le stockage est optimal si la cachette est située 
dans des sédiments anoxiques et hors de portée des fouisseurs concurrents. Étant donné que les subs-
tances organiques (i.e., nutriotionelles) sont oxydées en premier, la matière organique réfractaire est 
enrichit plus profondément dans le substrat. Toutefois, si la matière organique réactive est mise en 
contact avec la matière organique réfractaire à une reminéralisation microbienne accrue de la matière 
organique réfractaire, généralement jusqu’à 30 %, peut survenir. Ce processus est particulièrement 
efficace lorsque la matière organique fraîche est transférée dans des sédiments anoxiques. En outre, 
si un terrier ouvert est produit dans un sédiment anoxique, l’activité microbienne est stimulée par 
le fort gradient géochimique entre le sédiment hôte anoxique et l’eau oxygénée dans le lumen du 
tube. Les microbes et/ou leurs produits métaboliques peuvent également servir source de nourriture. 
Par conséquence, le comportement de stockage (Séquestrichnien) est une stratégie nutritionelle et 
de survie efficace pour les animaux vivant dans des environnements où la disponibilité de nourri-
ture benthique fluctue fortement, car il permet de conserver les ressources alimentaires pendant des 
périodes d’abondance pour les utiliser en cas d’une famine.

INTRODUCTION

Trace fossils record the behaviour of animals in the past (Abel 
1935; Richter 1941). Commonly, the taxonomic affinity of 
the tracemakers is not known and their behaviour, therefore, 
must be deciphered from trace-fossil characteristics and 
habitat (e.g. Seilacher 2007). In this way, the main types of 
behaviour can be distinguished and ascribed to ethological 
categories such as domichnia, cubichnia, repichnia, pascich-
nia, fodinichnia, referring respectively to dwelling, resting, 
moving, vagile deposit or detritus feeding on the surface, 
and subsurface sediment feeding, as outlined, among oth-
ers, by Seilacher (1953), Frey & Seilacher (1980), Bromley 
(1996) and Vallon et al. (2016). Some of the ethological 
categories are very broad and include several behavioural 
variants, such as repichnia for crawling on the surface, but 
also moving within the substrate. Ongoing research of trace 
fossils in combination with an increased understanding of 
physical, (geo)chemical and other environmental factors and 
biological responses to them in ancient and modern settings 
have yielded an increasingly detailed and differentiated view 
on the reaction of animals to their habitats, consequently, 
leading to the recognition of new behavioural categories. 
For instance, out of the well-established and broad category 
“fodinichnia” the category “agrichnia” was proposed for pat-
terned graphoglyptid traces such as Paleodictyon Meneghini, 
1850 (Ekdale et al. 1984). Agrichnia refer to subsurface 
farming of microbes or capturing of small invertebrates 
by the trace producer (Seilacher 1977a). In addition, the 

 category “chemichnia” was established for such common 
trace fossils as Chondrites Sternberg, 1833 and Trichichnus 
Frey, 1970 (Bromley 1996); the producers of these burrows 
follow a chemosymbiotic style of nutrition while microbes or 
microbially processed compounds are utilized (e.g. Seilacher 
1990). Furthermore, for trace fossils recording that their 
producers followed almost exactly a previous trace, the 
category of “sequorichnia” was introduced (Nara & Ikari 
2011; Wetzel et al. 2020). Further behavioural categories 
have been proposed (see compilation, for instance, by Val-
lon et al. 2015) but since they are irrelevant to this paper 
they are not discussed here.

In the present study, the ethological category of trace fossils 
“sequestrichnia” is discussed. The establishment of this rela-
tively new behavioural category is based on the observations 
that the producers of morphologically diverse trace fossils 
belonging to different ichnogenera and ichnofamilies sequester 
temporarily available organic-rich material on the sediment 
surface or from suspension and stow it in their burrows to 
be utilized during times of reduced benthic food availability. 
This concept was originally proposed by Uchman & Wetzel 
(2016) in a conference abstract and later applied to individual 
trace fossils (Uchman & Wetzel 2017; Jurkowska et al. 2018; 
Uchman & Rattazzi 2018; Uchman et al. 2019; Šamánek 
et al. 2022). Meanwhile the growing number of observations 
on trace fossils showing such a nutritional strategy as well 
as on modern counterparts impels us to address this type of 
behaviour and its environmental implications systematically. 
This is the purpose of the present paper.

MOTS CLÉS
Comportement,

stratégie alimentaire,
cachette,

saisonnalité,
mer profonde.
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BACKGROUND

Organic matter available on the seafloor fuels benthic life 
(e.g. Gage & Tyler 1991). In nearly all subaqueous envi-
ronments, organic matter delivery to and deposition on the 
sediment surface fluctuates considerably due to seasonally 
varying primary production (e.g. Smith et al. 2002, 2018; 
Lutz et al. 2007). In addition, where water depth exceeds a 
few hundred metres, the amount of organic matter arriving 
on the seafloor decreases exponentially with water depth 
due to oxidation while settling through the water column 
(e.g. Suess 1980; Burdige 2006). The size and shape of the 
organic particles influence settling velocity, and hence the 
degree to which they become oxidized during transport; 
large, rapidly settling particles are less affected than small 
ones (e.g. Shaw et al. 2020). In the deep sea, days to weeks 
after a seasonal bloom in surface water organic matter 
arrives as detritus on the seafloor, the benthos experiences 
high food availability for a short period of several weeks to 
a few months, followed by low organic matter input for a 
longer time of several months or longer (e.g. Graf 1992; 
Smith et al. 2002). Commonly, organic matter is associated 
with the clay fraction due to adsorption on clay mineral 
surfaces and hydraulic sorting (e.g. Mayer 1999; Burdige 
2006). At the sediment surface, a considerable proportion 
of organic matter is oxidized so long as it is located within 
the oxygenated zone (e.g. Smith et al. 1994, 2008; Tromp 
et al. 1995). Therefore, organic matter burial is strongly 
affected by sedimentation rate and only subordinately by 
primary production (e.g. Müller & Suess 1979; Stein 1991; 
Burdige 2007). Increasing sediment deposition, however, 
may dilute the organic matter content (e.g. Tyson 2001).

Two scenarios need to be distinguished concerning sedimen-
tation rate. At sedimentation rates exceeding c. 2 cm kyr–1, 
organic matter is buried and anoxic conditions develop within 
the deposits (e.g. Jung et al. 1997). Below the threshold 
value of 2 cm kyr–1, sediment accumulation is so low that 
the deposits become completely oxidized, represented in 
the rock record by oceanic red beds barren of organic mat-
ter (e.g. Wagreich & Krenmayr 2005; see also Jung et al. 
1997). As long as organic matter (i.e., benthic food) is avail-
able, animals bioturbate these deposits and enhance the flux 
of oxygen into the sediment, which in turn causes organic 
matter oxidation (e.g. Wetzel & Uchman 2018). Nonethe-
less, below the sediment surface low-oxygenated to slightly 
anoxic conditions may locally exist for some time in oceanic 
red beds (e.g. Hartmann 1979; Berner 1981; Myrow 1990). 
Such conditions prevail in the wide areas of the abyssal oceans.

When exposed to oxygen, the most reactive organic com-
pounds are degraded first (e.g. Nierop et al. 2017). The 
reactive compounds are preferentially utilized by benthic 
animals because of the easily accessible nutritional value (e.g. 
Rullkötter 2006). The higher the organic matter delivery to 
the seafloor, the more intense is bioturbation (e.g. Boudreau 
1998). Due to increasing bioturbation, the oxygenated zone 
is expanded and the residence time of organic matter therein 
(i.e., oxygen exposure time; Hartnett et al. 1998) becomes pro-

longed facilitating oxidation of organic matter (e.g. Smith & 
Rabouille 2002; Burdige 2006). In turn, the delivered fresh 
organic matter becomes dispersed within the surface mixed 
layer (e.g. Boudreau 1998) and thus, relatively diluted. In 
fine-grained, anoxic sediments, the oxic zone around burrows 
ventilated with oxygenated water remains relatively thin, on 
the order of 1-2 mm (e.g. Meysman et al. 2010); the steep 
geochemical gradient between tube water and host sediment 
stimulates microbial activity (e.g. Kristensen & Kostka 2005).

During bioturbation, relatively labile organic matter from 
the sediment surface is brought into close association with 
more refractory material deeper in the sediment over a wide 
range of time scales, depth scales, and geometries (e.g. Aller & 
Cochran 2019). For instance, organic particles of different 
reactivity and origin can be intermixed in a diffusion-like 
manner (Gerino et al. 1998; Meysman et al. 2003). Bring-
ing together relatively labile and refractory organic matter 
by bioturbation promotes the phenomenon referred to as 
priming (Aller & Cochran 2019). Priming is defined as the 
enhanced microbial remineralization (conversion to CO2) 
of otherwise low-reactive (refractory) organics in association 
with the decomposition of relatively reactive organic material 
in soils, aquatic sediments and natural waters (Löhnis 1926; 
Graf 1992; Hee et al. 2001). In particular, the input of fresh 
organic matter strongly stimulates microbial activity under 
anoxic conditions and in sediments relatively low in reactive 
organic matter; remineralization rates related to priming may 
reach c. 30% (van Nugteren et al. 2009). Even low amounts of 
organic matter buried below the oxygenated zone in the anoxic 
zone stimulate priming, and thus the activity of microbes; the 
microbes and/or their metabolic products represent a food 
source for burrowing animals (e.g. van Nugteren et al. 2009).

In addition, sequestered material can also be exploited indi-
rectly, probably by solutions and ectoenzymes. The enzymes 
excreted by bacteria can be particularly active in burrows 
(Boetius 1995). This leads to the transformation of particulate 
organic matter into more labile or amorphous organic mat-
ter (cf. Boetius et al. 1996; Bélanger et al. 1997; Cao et al. 
2013; Aller & Cochran 2019) that can be more easily taken 
up by the body surface of a burrowing animal. For instance, 
the flatworm Paracatenula Sterrer & Rieger, 1974, can absorb 
nutrition through its body surface (Jäckle et al. 2019). Some 
invertebrates stimulate the flow of pore water around their 
burrows by irrigation, and the nutritional organic matter can 
be leached (Brand et al. 2013), a process possibly also involv-
ing microbes, and utilized as food. All of this would reduce 
the energy-costly sediment reworking by body movements.

Organic matter available on the seafloor fuels benthic life. 
In oxygenated settings, benthic biomass decreases roughly 
exponentially with depth in sediment (e.g. Rex et al. 2006). 
The benthic animals get their nutrition in various ways; among 
them are opportunistic animals like holothurians that may 
respond immediately to the input of food and ingest organic-
rich flocs as they arrive on the seafloor (e.g. Smith et al. 1986; 
Lauermann et al. 1997). Shallow-penetrating vagile echinoids 
that plough through the sediment and mix it as they feed 
within the surface mixed layer (e.g. Lohrer et al. 2004; Wetzel 
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2009). Some animals convey organic-rich material downward 
below the mixed layer (e.g. Jumars et al. 1990; Levin et al. 
1997), a behaviour that is addressed in detail below.

GENERAL CONCEPT

The concept of stowing behaviour is rather simple: Animals 
collect organic-rich sediment or select organic particles on 
the sediment surface or from suspension, transport the mate-
rial along their body or via their gut deep into the deposits 
and store it there to be utilized during periods of low food 
availability on the seafloor. Optimal storage conditions are 
accomplished if the sequestered material is not exposed to 
oxygenated water and if it is stowed below the intensely mixed 
zone, and thus below the reach of other animals competing 
for food. Although the general concept of sequestrichnia is 
simple, various trace-fossil producers have developed many 
ethological variants that differ in detail from one another 
and provide niche-related specialization as explained by the 
examples in the following.

Two general burrow morphologies are distinguished: spreite 
burrows and tubular open burrow systems. For each category 
an example is addressed in detail, whereas similar burrows of 
the same category are only briefly dealt with. In each case, prin-
cipal aspects of burrow morphology, evidence of sequestration, 
and subsequent utilization of stowed material are outlined.

Spreite burrowS

Ichnogenus Zoophycos Massalongo, 1855 
(Fig. 1)

Zoophycos represents a regularly to irregularly coiled, simple to 
complex lobate spreite burrow that has shown changes in shape, 
size, and geometry through the Phanerozoic (e.g. Seilacher 
1977b; later refined by Chamberlain 2000 and Zhang et al. 
2015). For most Zoophycos older than the late Mesozoic, dif-
ferent ways of spreite production and behaviour are possible, 
including fodinichnial behaviour (e.g. Olivero & Gaillard 
1996). In contrast, for Late Cretaceous to modern Zoophy-
cos, sequestrichnial behaviour of the producers appears to be 
common. These are outlined here.

Evidence for sequestration of sediment on the seafloor is 
given by the colour of the spreite fill in combination with 
enlarged organic carbon values. The spreite consists of alter-
nating lamellae containing host sediment and material likely 
sequestered on the seafloor and transferred downward; pellets 
may occur in both types of lamellae (Fig. 1). The sequestered 
sediment is commonly darker in greenish-grey host sediment 
or grey in reddish host sediment. In both cases, the organic 
carbon content of the spreite fill is higher than that of the 
host sediment; for example, the black spreite material of Pale-
ocene Zoophycos (Gurnigel Flysch; Seligraben/Gurnigelbad, 
Switzerland) contains 1.1-1.7% Corg compared to 0.5-0.7% 
Corg in the green host sediment (see Wetzel & Uchman 1998: 
fig. 1d, e). In the Eocene of Arnakatxa Headland near Bilbao, 

0.3-0.7% Corg occurs in grey spreite material and < 0.1% Corg 
in red limestone lutite alternations. However, in deep oce-
anic settings, also lighter material deposited during periods 
of enhanced nannoplankton productivity can be transferred 
downward (Fig. 1A). Other tracers, e.g. volcanic ash, also 
record a downward sediment transfer (e.g. Kotake 1991). For 
Pleistocene and Holocene Zoophycos, chronometric age data 
record a sequestration of surface material as the spreite fill is 
generally younger than the host sediment (e.g. Löwemark & 
Werner 2001; Leuschner et al. 2002; Küssner et al. 2018). In 
well-dated sediments, Zoophycos appears to be produced when 
environmental conditions switch to a starved sedimentation 
regime (Küssner et al. 2018) or during times of enhanced 
seasonality (e.g. Löwemark et al. 2006; Wetzel et al. 2011; 
Dorador et al. 2016).

The Zoophycos producer stows the sequestered material com-
monly in the form of mud lamellae or pellets in the spreite. 
Pellets, however, occur in both host and sequestered sediment, 
suggesting that they could have provided “seed” microbes housed 
in the gut to the spreite “bioreactor” (Fig. 1C). Therefore, a 
priming scenario appears realistic, in particular as subsequent 
lamellae overlap previous ones, indicating partial reworking 
and utilization of the spreite fill by the tracemaker (Fig. 1D). 
Since Zoophycos represents very likely a lifetime burrow of 
its producer (e.g. Wetzel & Werner 1980), the worm-like 
tracemaker probably took advantage of priming on a time 
scale of months to years.

Ichnogenus Polykampton Ooster, 1869

Polykampton occurring in Cretaceous (Albian) to Oligocene 
deposits represents a horizontal median tunnel with lateral 
spreite lobes, which alternate on either side of the tunnel and 
are slightly inclined to bedding; the tunnel runs within the 
interval of the spreite lobes or underneath (Uchman et al. 
2019). Polykampton is produced: 1) in the sandy or muddy 
interval of (turbiditic) event beds; 2) along the mudstone-
sandstone interface; or 3) across the sandstone-mudstone 
transition in turbiditic beds. The spreite and the main tunnel 
contain mud that is enriched in organic matter compared to 
the surrounding host sediment (Corg 3.05% vs 1.05%; Uch-
man et al. 2019). The mud was evidently introduced from 
above into the burrow. The organic content of spreite lobes 
could be a source of additional benthic food in the short term, 
just after organic-rich material was sequestered on the surface 
and stowed in spreite lobes. In addition, or alternatively, the 
producer could utilize organic matter when passing through 
the tunnel during the construction of a new lobe. By then, 
the sequestered organic-rich material might have already been 
altered to some degree by microbial activity.

Ichnogenus Tubulichnium Książkiewicz, 1977 
(Fig. 2)

Tubulichnium is an oblique to horizontal, unbranched, blind-
ending tube showing some internal organization due to slight 
vertical shift; the margins are densely lined with ellipsoidal 
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muddy pellets. The sequestration of material, which is then 
stowed in muddy laminae and pelleted fill, is documented by 
its composition: it contains c. 1.5% Corg and 20% CaCO3 
compared to c. 1.1% Corg and c. 26% CaCO3 in the host 
sediment and 0.7% Corg and 12% CaCO3 in the overlying 

mud in the studied Upper Cretaceous to Paleogene specimens 
(Uchman & Wetzel 2017). These data point to selective enrich-
ment of organic-rich particles in the burrow. Microbial activity 
during priming may generate CO2 that lowers alkalinity and 
fosters the dissolution of carbonate (van Nugteren et al. 2009). 

fig. 1. — Sequestered and downward-transferred material in Zoophycos Massalongo, 1855: A, black mud and white nannofossil ooze displaced for > 26 (black 
arrows) and > 23 cm (white arrows) downward, respectively, as indicated by colour and composition of sediment (Institute of Geological Sciences Kiel, Ger-
many, core 16867-3; 2.2°S, 5.1°E, 3894 m water depth, mid Atlantic; 16.56-16.99 m core depth); B, sequestered organic-rich grey sediment filling Zoophycos 
spreite (white arrows) produced in red pelagic mud (Maastrichtian, Zumaia, Spain); C, homogeneous and pelleted sequestered sediment alternating with host 
sediment in Zoophycos spreite; inset (C’) showing pellets occurring in both sequestered sediment (green arrows) and host sediment (yellow arrows) (DSDP 
Leg 93, Site 605, Core 16-4, 59.5-66.5 cm core depth; for details see Wetzel 1987); D, truncation of lamellae (marked with red stippled lines) in Zoophycos 
spreite in horizontal section, indicating reworking of previously emplaced material (Paleogene, Zumaia, Spain). Scale bars: 1 cm.
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Although no clear spreite is developed, a partly laminated fill 
exhibiting local truncations (Fig. 2B, C) suggests utilization 
of the stowed material, as in the case of Zoophycos.

tubular open burrow SyStemS

Ichnogenus Cladichnus D’Alessandro & Bromley, 1987

The Cladichnus burrow (Cretaceous-Eocene) consists of pri-
mary successively branched and radiating tubes, which contain 
a meniscate fill. These traces are preferentially constructed 
in anoxic sediments. New branches are produced roughly at 
the same level as previous ones, implying that appropriate 
conditions for stowing were encountered by the producer. In 
contrast, new branches constructed below or above may target 
stronger or weaker reducing conditions or represent a response 
to the downward or upward migration of the redox boundary.

Collection and transfer of surface material is recorded by 
the tubes’ fill that was analyzed in detail for the ichnospecies 
Cladichnus parallelum Wetzel & Uchman, 2013, which con-
tains 0.8% Corg and 0.3% CaCO3 compared to 0.3% Corg 
and 64% CaCO3 in the host sediment Cretaceous in age 
(Wetzel & Uchman 2013). The fill of the branches is inter-
preted to indicate priming that provided microbes (or their 
metabolic products) as an additional subsurface food source 
(cf. Mayer et al. 2001; van Nugteren et al. 2009).

Most likely, the trace producer ingested a considerable 
proportion of the filling material before emplacing the final, 
now meniscate fill. The arrangement of the branches has fur-
ther implications. Branches at a level above the previous ones 
could allow utilization of upstreaming pore water, probably 
carrying nutritious compounds. Alternatively, a shift of the 
redox boundary may have caused the construction of new 
levels of open burrows.

Ichnogenus Phymatoderma Brongniart, 1849

Phymatoderma (Lower Jurassic-Pliocene) appears to be similar 
in some aspects to Cladichnus since it represents an actively 
filled burrow system consisting of numerous branches, which 

deviate at a few levels from a common stem, diverging dis-
tally (e.g. Fu 1991; Izumi 2012). However, the producers 
tended to operate in a plane or only a few levels, less than in 
Cladichnus. In most cases, the branches are filled with pellets 
that are darker than the surrounding material (e.g. Uchman 
1999), suggesting a higher content of organic matter that 
could foster enhanced microbial activity (e.g. Izumi et al. 
2015). In black shales, in contrast, the pellets are lighter than 
the host sediment but document incorporation of surface 
detritus (Seilacher 1978; Izumi 2012).

Ichnogenus Thalassinoides Ehrenberg, 1944 
(Fig. 3)

Crustaceans living in the modern deep South China Sea produce 
Thalassinoides-like burrows that document a sequestrichnial 
behaviour. Two kinds of burrows were encountered, which 
contained abundant foraminiferal tests stowed in greenish anoxic 
sediment. One burrow type contains benthic agglutinated 
foraminifera tests, which consist mainly of Pinatubo-1991 ash 
but were stowed below the ash in anoxic sediment (Kamin-
ski & Wetzel 2004). The other kind of Thalassinoides occurs 
in water depths below the CCD; it exhibits a laminated fill 
consisting of calcareous planktonic foraminiferal tests that are 
stowed and preserved in the burrow, whereas they are already 
dissolved in the overlying hemipelagic sediment from which 
they originate (Wetzel & Unverricht 2013). The calcareous 
foraminiferal tests must have been stowed shortly after their 
deposition; otherwise they would show dissolution features. 
Partly truncated laminae in the burrow imply later reworking 
by the producer (Fig. 3).

Ichnogenus Avetoichnus Uchman & Rattazzi, 2011 
(Fig. 4)

Avetoichnus (Paleocene-Oligocene) represents a mid-tier 
burrow consisting of a mostly horizontal to subhorizon-
tal helix enveloping a central tube that was probably an 
open tunnel when the tracemaker lived. The tube contains 
grey mud, whereas the spiral is filled with black, probably 

fig. 2. — Tubulichnium Książkiewicz, 1977 in turbiditic sand (Inoceramian Beds, Campanian-Paleocene, Magura Nappe, Słopnice, Poland): A, Tubulichnium 
penetrating down into turbidite sandstone; typical lining with mud pellets. Depression (surrounded by a white stippled line) resulting from sediment collapse 
after abandonment of the tube inhabited by the producer; B, C, traverse (B) and transverse oblique (C) sections of Tubulichnium. Pelletal laminae occurring at 
the base of the burrow (white arrows) and also in intermediate position (yellow arrows); local truncation of pellet-rich layers indicating subsequent, perhaps 
multiple reworking by the producer. Scale bars: 1 cm.
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organic-rich mud that likely originated from the overlying 
pelagic sediment (Uchman & Rattazzi 2011). The tube 
resembles a pinched open burrow that truncates the inner 
edges of the helical turns, which were already filled with 
dark mud when the tunnel was still inhabited. Chemichnia 
like Chondrites co-occur with Avetoichnus (Fig. 4).

The colour of the helical fill suggests that it was displaced 
downward. Furthermore, the partial truncation of the inner 
turns of the spiral points to later reworking by the tracemaker. 
Very likely, the organic material in the spiral fostered the devel-
opment of reducing conditions therein whereas the central 
tunnel was open and oxygenated water could be circulated 
through it by the inhabitant. Thus, a steep geochemical gradi-
ent developed across the tunnel margin between anoxic host 
sediment and oxic water in the lumen, a situation known to 
enhance microbial activity (e.g. Meysman et al. 2010). Thus, 
the trace-fossil producer sequestering organic-rich material 
on the seafloor appears to have constructed an organic-rich 
subsurface domain that rapidly became anoxic. Therefore, 
this trace is classified as a sequestrichnion.

other poSSible SequeStrichnia

The burial of labile organic matter in anoxic sediments deep 
below the surface mixed layer strongly suggests priming induced 
by the trace producers, probably wormlike animals such as 
echiurans, sipunculids, and polychaetes together with crusta-
ceans. Besides utilizing the sequestered burrow fill directly as 
indicated by subsequent reworking, some trace-fossil producers 
burrowed down and construct a cache underneath a domain, 
which is already enriched in organic matter like seagrass or 
wood (e.g. Griffis & Suchanek 1991; Bojanowski & Wetzel 
2024). From this perspective, some other trace fossils could 
also be sequestrichnia.

At least some specimens of the spreite burrow Teichichnus 
zigzag Frey & Bromley, 1985 occurring in Jurassic deposits 
record sequestrichnial behaviour (e.g. Wetzel et al. 2023). 
Teichichnus zigzag exhibits: 1) a spreite enriched in organic-
rich material relative to the host sediment; 2) no reworking 
halo around the spreite (thus indicating that the organic 
matter was introduced from above); 3) lamellae produced 
later that systematically crosscut previously produced ones, 
and hence indicate reworking by the producer. It can thus 
be excluded that reworking represents a response to erosion 
of the sediment surface, because reworking of the spreite 
is locally restricted. Furthermore, in calm lagoonal bayfill 
deposits, T. zigzag is common (Knaust 2018). In these 
settings, hyperpycnal flows may provide organic matter. 
Therefore, a sequestrichnial behavior of the T. zigzag trace-
makers in calm lagoonal settings is highly likely though it 
has not yet been demonstrated.

Other spreite burrows, for instance Rhizocorallium com-
mune Schmid, 1876, are extensively filled with pellets. They 
were produced in dysoxic, low-energy mud (Knaust 2013), 
and could represent sequestrichnia. Unfortunately, TOC 
data of the spreite fill and host sediment are not available 
and, therefore, clear evidence of sequestrichnial behaviour is 
lacking although it is not unlikely.

Halimedides Lorenz von Liburnau, 1902, Cambrian (Series 2) 
to Recent in age, is a system of horizontal tunnels with 
chambers strung along it, not rarely in the context of poorly 
oxygenated deposits (Fernández-Martínez et al. 2021). When 
preserved in full relief, the chambers are filled with darker 
material than in the surrounding rock (e.g. Uchman 1999). 
The chambers, which have been interpreted as food caches 
(Gaillard & Olivero 2009; Lukeneder et al. 2012), could be 
good places for microbial processing of organic matter.

fig. 3. — Thalassinoides Ehrenberg, 1944 filled with planktonic foraminifera 
tests (downward displacement marked by a yellow arrow) in a sub-CCD 
setting indicating rapid sequestration after deposition on the sea floor; inset 
showing local truncation (red lines) of laminae (yellow lines), indicating sub-
sequent, probably multiple reworking by the producer. (RV Sonne cruise 114, 
core 27-1, 0-21 cm sediment depth; 15°45.00’N, 115°45.00’E, central South 
China Sea, 4220 m water depth; for details see Wetzel & Unverricht 2013). 
Scale bar: 1 cm.
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Lepidenteron mantelli (Geinitz, 1850) is a burrow in Upper 
Cretaceous marls of the deeper continental shelf. It is filled with 
sediment rich in plant material, which is strongly pyritized, 
foremost with pyrite framboids (Jurkowska et al. 2018). The 
plant material was actively collected, was a substrate for microbial 
activity and probably promoted priming. Therefore, this trace 
fossil could be partly sequestrichnial and partly chemichnial.

Gyrophyllites Glocker, 1841, Cambrian(?) and Early Ordo-
vician to Cenozoic in age, is composed of a vertical to sub-
vertical shaft with lateral, radial, petal-like lobes that may be 
repeatedly distributed at a few levels. The lobes may be filled 
with organic-rich material from the underlying or overlying 
bed, and their position at different levels was modulated by 
the migration of the redox boundary (Strzeboński & Uchman 
2015; Muñoz et al. 2019). The fill of the lateral lobes could 
promote microbial processing including priming. However, in 
the case of Gyrophyllites, the mud appears to have been taken 
not only from the seafloor but also from of a bed beneath 
it, in cases where the proper mud was not present on the 
seafloor, in particular if a decelerating, low-erosive gravity 
flow rapidly deposited sand that covered and preserved the 
previous seafloor including the topmost organic-rich interval.

Some Planolites Nicholson, 1873 from Cretaceous marls 
was evidently filled actively with darker sediment from above 
(Locklair & Savrda 1998), possibly to induce priming. As 
Planolites can be produced by diverse organisms in a wide 
range of environments, only certain representatives of this 
ichnogenus might be sequestrichnia. Also, Alcyonidiopsis 
Massalongo, 1856, a simple, cylindrical burrow filled with 
pellets, commonly darker than the surrounding deposits, and 
known at least since the Ordovician (see Uchman 1999) can 
belong to sequestrichnia.

DISCUSSION

A synoptic comparison of the behavioural variants applied by 
burrowing animals that accomplish a sequestrichnial nutri-
tional strategy helps to define the criteria to classify a trace 
as a sequestrichnion.

A deep burrow or part of a burrow is enriched in organic-
rich matter, whereas the surrounding host sediment shows 
no indication of sorting or reworking related to that burrow, 
such as a halo consisting of sorted material. The material 
enriched in organic matter must have intentionally been 
introduced from above.

The downward-transferred, sequestered material contains 
sedimentary tracers that unequivocally originated from the 
contemporary seafloor, such as volcanic ash, microfossils 
(providing at least relative ages), tektites, etc.

Active fill is indicated by menisci or (spreite) lamellae or 
laminae.

Reworking of the sequestered material is recorded, for 
instance, by truncated menisci or lamellae.

Not all these criteria are met in any one ichnotaxon. For 
instance, even an evident sequestrichnion like Zoophycos does 
not meet all the above criteria. As shown in Figure 1A, the 

Zoophycos spreite is filled with material definitely derived from 
above, such as whitish nannofossil ooze, but is not enriched 
in organic matter. In this case, the large amount of coccoliths 
probably led to a dilution effect. Other doubtful cases may 
result from later oxidation of organic matter, in particular in 
the pelagic or hemipelagic oceanic red beds, which house Zoo-
phycos with a red spreite surrounded by red host sediment, both 
low in Corg (< 0.1%; Wetzel & Uchman 2012: fig. 5F, G). In 
this case, the sedimentation rate was probably so low that the 
deposits were later completely oxidized, including the spreite.

The reworking of a previously formed burrow domain by 
the tracemaker becomes evident by crosscutting of subse-
quently produced burrow fill elements such as menisci, spreite 
lamellae, or the partially truncated helix of Avetoichnus. In 
contrast, for trace fossils like Cladichnus, reworking by the 
producer is not evident. However, it must be remembered 
that only the last phase of trace production is preserved in 
the sediment record. In the case of Cladichnus, it is possible 
that the lumen fill was reworked before the final fill was 
emplaced (see above), or the lumen fill acted as drainage for 
porewater enriched in reductant compounds that could be 
taken for nutrition if oxygen became available or symbionts 
were housed by the trace producer (implying combined 
sequestrichnial-chemichnial behaviour).

Microbial activity within the burrow fill is likely, but there 
is no test to determine whether it occurred during the life of 
the tracemaker or later. For instance, framboidal pyrite in the 
Zoophycos spreite has been interpreted to indicate microbial 
activity (e.g. Gong et al. 2007). It is not known, however, 
whether the sulphate-reducing microbes were already active 
during burrow production or later. Similarly, there is no 
proof that microbial activity was stimulated by the injec-
tion of labile organic matter to initiate priming. Nonethe-
less, priming occurs in every environment, and therefore is 
impossible to exclude from marine environments (see above, 
Background; van Nugteren et al. 2009). It appears that 
priming represents a very efficient way to develop main or 
additional food resources, because even low amounts of labile 
organic matter can enhance microbial activity considerably 
(e.g. van Nugteren et al. 2009).

Sequestrichnial behaviour has existed at least since the Cam-
brian (Series 2) as marked by the occurrence of Halimedides 
(Novis et al. 2022). Cambrian occurrences of Gyrophyllites are 
not obvious, but they are confirmed from the Early Ordo-
vician (Muñoz et al. 2019). The occurrences of most other 
sequestrichnia are related to the Mesozoic Marine Revolu-
tion in the deep sea, one of the consequences of which was 
increased competition for food (Uchman 2004).

environmental implicationS

Sequestrichnia evidently occur in settings characterized by 
short periods of organic matter deposition on the seafloor, 
for instance, after seasonal phytoplankton blooms in surface 
waters followed by a comparatively long period of low benthic 
food availability. Therefore, aside from pelagic environments, 
this behaviour is also appropriate in settings experiencing 
ephemeral deposition of organic-rich material and organic 
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debris carried by mass flows or gravity currents to levee or 
overbank settings of deep-sea fans (e.g. Khripounoff et al. 
2003; Vangriesheim et al. 2009; Mignard et al. 2017). As 
the amount of available benthic food settling to the seafloor 

decreases with water depth (see Background), sequestrich-
nial behaviour represents a more advantageous strategy with 
increasing water depth. Consequently, sequestrichnia occur 
typically in the Zoophycos and the Nereites ichnofacies.

fig. 5. — Chondrites Sternberg, 1833 exhibiting meniscate fill. Organic-rich mud arranged in menisci implies sequestrichnial behaviour of the producer: A, Chon-
drites filled with material finer than the host sediment (ch). Chondrites crosscuts Planolites Nicholson, 1873 (P). X-ray radiograph, negative: mud, dark; silt and 
sand, light. Institute of Geological Sciences Kiel, Germany, core 13250-1, 22-25 cm, 15°42.2’N, 17°32.7’W, 1680 m water depth (for details see Wetzel 1981); 
B, thin section of the Chondrites (Ch) shown in (A) filled with sediment finer than the host sediment (h), providing clear evidence of meniscate fill. Some menisci 
marked by red broken line. The same core as in A; C, Chondrites filled with material coarser than the host sediment. Organic-poor, silty fill arranged in menisci 
(see D) implies a chemichnial behaviour (for details see text). X-ray radiograph, negative: mud, dark; silt and sand, light. Institute of Geological Sciences Kiel, 
Germany, core 13239-1, 284-287 cm, 13°52.6’N, 18°18.8’W, 3156 m water depth (for details see Wetzel 1981); D, thin section of the Chondrites (Ch) shown 
in C, filled with sediment coarser than the fine-grained host sediment (h), providing clear evidence of meniscate fill (some menisci marked by red broken line). 
For further details see Wetzel (1981). Scale bars: A, C, 1 mm; B, D, 0.5 mm.

fig. 4. — A-C, Field photographs of Avetoichnus luisae Uchman & Rattazzi, 2011 in the upper part of a turbiditic marl bed (Middle Eocene) at Zbludza, Magura 
Nappe, Polish Carpathians. Note that in A, Avetoichnus co-occurs with other sequestrichnia, i.e., Zoophycos. Abbreviations: Av, Avetoichnus luisae; Cha, Chon-
drites affinis (Sternberg, 1833); Chi, Chondrites intricatus (Brongniart, 1828); Zo, Zoophycos Massalongo, 1855. Scale bars: 1 cm.
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Sequestrichnia are commonly emplaced in muddy sediment or 
in sand covered by mud. For the conservation of organic matter, 
a mud cover provides the advantage of having low permeability 
and diffusivity, hence the supply of electron acceptors for the 
oxidation of organic matter is limited. The stowing of organic-
rich material deep within sediment, where oxygen is low or 
has already been consumed, is optimal for its conservation, in 
contrast to oxic conditions on or close to the seafloor. In both 
oxic and anoxic host sediments, the downward transfer of labile 
organic matter has a high potential to facilitate enhanced micro-
bial activity since priming is not limited to either oxic or anoxic 
conditions (e.g. van Nugteren et al. 2009; Aller & Cochran 
2019). Consequently, the animals producing sequestrichnia 
do some bioengineering by developing microenvironments in 
and around the cache wherein labile organic matter is stowed. 
In fact, such a cache represents the transition to chemichnia. 
The producers of the latter, however, are interpreted to feed on 
microbes or their metabolic products, and, importantly, they have 
not stimulated microbial activity by “injecting” labile organic 
matter (deep) into the sediment. However, the fill of Chondrites 
represents an ambiguous case because morphologically similar 
Chondrites can exhibit a meniscate or homogeneous fill, coarse 
or fine-grained, and even hollow burrows have been observed 
in Recent sediments (Wetzel 1981, 2008; Fig. 5). Only Chon-
drites showing a meniscate fill consisting of organic-rich mud 
suggests sequestrichnial behaviour, whereas coarse-grained fill 
or empty burrows may be typical of chemichnia.

Sequestrichnia considerably contribute to bioturbation as 
particles are transferred through considerable vertical dis-
tances (“non-local mixing”, e.g. Boudreau 1986; Boudreau & 
Imboden 1987). Thus, sequestrichnial behaviour causes dis-
turbance of the stratigraphic layering, including palaeoenvi-
ronmental and palaeoceanographic signals (e.g. Levin et al. 
1997; Kaminski & Wetzel 2004).

Furthermore, geochemical processes are considerably affected 
by the transfer of labile organic matter downward by induc-
ing priming at the cache site, and finally by the ventilation 
of the inhabited burrow by oxygenated water, which fosters 
enhanced microbial activity (e.g. Meysman et al. 2010).

CONCLUSIONS

Seasonally varying primary production affects wide regions 
of the oceans today and very likely did also in the past. In 
particular, in oligotrophic deep-sea settings, seasonal fluctua-
tions in organic matter delivery require a survival strategy for 
the benthos. Sequestrichnia appear to record an appropriate 
behaviour of their producers: 1) collecting (labile) organic 
matter on the seafloor or from suspension; 2) transferring it 
downward; 3) stowing it in a subsurface cache; and 4) utiliz-
ing it during times of shortage in benthic food.

Sequestrichnia typically occupy a mid- to deep-tier posi-
tion, commonly in anoxic sediment. The sequestered mate-
rial is commonly stowed in anoxic sediment domains below 
the oxic surface mixed layer. Their fill is arranged in pellets, 
a spreite, menisci, or a mixture thereof.

The transfer of labile organic matter deep below the surface 
can considerably enhance the remineralization of organic matter 
by microbes, called priming; in turn, further nutritional organic 
compounds such as microbes and their metabolic products 
become available as food for the producers of sequestrichnia.

As the amount of available benthic food decreases with 
water depth, sequestrichnial behaviour becomes a more 
advantageous strategy with increasing water depth. Conse-
quently, sequestrichnia occur typically in the Zoophycos and 
the Nereites ichnofacies.
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