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Uchman A. & Wetzel A. 2024. — Sequestrichnia — an ethological category of marine trace fossils recording the col-
lection and stowage of nutritional material within burrows. Comptes Rendus Palevol 23 (22): 325-338. https://doi.
org/10.5852/cr-palevol2024v23a22

ABSTRACT
Morphologically diverse trace fossils belonging to different ichnogenera share similar characteristics in
that their producers: 1) sequester organic-rich sediment from the seafloor, or from suspension when
plenty of benthic food is available; 2) transfer it downward; 3) stow it in a burrow; and 4) utilize it
later during times when benthic food availability is restricted. Organic matter delivery to the seafloor
is subject to pronounced seasonal fluctuations. Storage is optimal if the cache is located in anoxic
sediment and beyond the reach of competing burrowers. Since the most reactive (i.e., nutritional)
organic substances become oxidized first, refractory organic matter is enriched deeper in the substrate.
If, however, reactive organic matter is brought in contact with refractory organic matter, priming
may take place. Priming refers to enhanced microbial remineralization of refractory organic matter,
typically up to 30%. This process is especially efficient where fresh organic matter is transferred into
anoxic deposits. In addition, if an open burrow is produced within anoxic sediment, microbial ac-
KEY WORDS  tivity is stimulated by the steep geochemical gradient between anoxic host sediment and oxygenated

Behaviour, water in the lumen. The microbes and/or their metabolic products may also serve as food source.
nutritional strategy,  Consequently, stowing behaviour is an efficient nutritional and survival strategy for animals living in
cache, : . . . . .
scasonality, ~ SCttings that experience strongly fluctuating delivery of benthic food, by conserving food resources
deepsea.  during times of plenty to be used when starving.
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RESUME

Sequestrichnia — une carégorie éthologique de traces de fossiles marins signalant la collecte et le stockage
de matériel nutritionnel dans des terriers.

Les ichnofossiles morphologiquement diversifiés appartenant a divers ichnogenres partagent des carac-
teres comparables en ce sens que leurs producteurs : 1) séquestrent des sédiments riches en matiéres
organiques du fond marin, ou bien en suspension lorsque la nourriture benthique est abondante;
2) le transférent vers le bas; 3) les stockent dans un terrier; et 4) les utilisent plus tard lorsque la
disponibilité de nourriture benthique est limitée. Lapport de matiére organique au fond de la mer
est soumis 2 des fluctuations saisoniéres prononcées. Le stockage est optimal si la cachette est située
dans des sédiments anoxiques et hors de portée des fouisseurs concurrents. Erant donné que les subs-
tances organiques (i.e., nutriotionelles) sont oxydées en premier, la matiére organique réfractaire est
enrichit plus profondément dans le substrat. Toutefois, si la matiere organique réactive est mise en
contact avec la matiére organique réfractaire & une reminéralisation microbienne accrue de la matiere
organique réfractaire, généralement jusqu'a 30 %, peut survenir. Ce processus est particuliérement
efficace lorsque la matiére organique fraiche est transférée dans des sédiments anoxiques. En outre,
si un terrier ouvert est produit dans un sédiment anoxique, 'activité microbienne est stimulée par
le fort gradient géochimique entre le sédiment héte anoxique et I'eau oxygénée dans le lumen du
tube. Les microbes et/ou leurs produits métaboliques peuvent également servir source de nourriture.
Par conséquence, le comportement de stockage (Séquestrichnien) est une stratégie nutritionelle et
de survie efficace pour les animaux vivant dans des environnements ot la disponibilité de nourri-
ture benthique fluctue fortement, car il permet de conserver les ressources alimentaires pendant des

mer profonde.

INTRODUCTION

Trace fossils record the behaviour of animals in the past (Abel
1935; Richter 1941). Commonly, the taxonomic affinity of
the tracemakers is not known and their behaviour, therefore,
must be deciphered from trace-fossil characteristics and
habitat (e.g. Seilacher 2007). In this way, the main types of
behaviour can be distinguished and ascribed to ethological
categories such as domichnia, cubichnia, repichnia, pascich-
nia, fodinichnia, referring respectively to dwelling, resting,
moving, vagile deposit or detritus feeding on the surface,
and subsurface sediment feeding, as outlined, among oth-
ers, by Seilacher (1953), Frey & Seilacher (1980), Bromley
(1996) and Vallon er al. (2016). Some of the ethological
categories are very broad and include several behavioural
variants, such as repichnia for crawling on the surface, but
also moving within the substrate. Ongoing research of trace
fossils in combination with an increased understanding of
physical, (geo)chemical and other environmental factors and
biological responses to them in ancient and modern settings
have yielded an increasingly detailed and differentiated view
on the reaction of animals to their habitats, consequently,
leading to the recognition of new behavioural categories.
For instance, out of the well-established and broad category
“fodinichnia” the category “agrichnia” was proposed for pat-
terned graphoglyptid traces such as Paleodictyon Meneghini,
1850 (Ekdale er al. 1984). Agrichnia refer to subsurface
farming of microbes or capturing of small invertebrates
by the trace producer (Seilacher 1977a). In addition, the
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périodes d’abondance pour les utiliser en cas d’une famine.

category “chemichnia” was established for such common
trace fossils as Chondrites Sternberg, 1833 and Trichichnus
Frey, 1970 (Bromley 1996); the producers of these burrows
follow a chemosymbiotic style of nutrition while microbes or
microbially processed compounds are utilized (e.g. Seilacher
1990). Furthermore, for trace fossils recording that their
producers followed almost exactly a previous trace, the
category of “sequorichnia” was introduced (Nara & Ikari
2011; Wetzel er al. 2020). Further behavioural categories
have been proposed (see compilation, for instance, by Val-
lon ez al. 2015) but since they are irrelevant to this paper
they are not discussed here.

In the present study, the ethological category of trace fossils
“sequestrichnia” is discussed. The establishment of this rela-
tively new behavioural category is based on the observations
that the producers of morphologically diverse trace fossils
belonging to different ichnogenera and ichnofamilies sequester
temporarily available organic-rich material on the sediment
surface or from suspension and stow it in their burrows to
be utilized during times of reduced benthic food availability.
This concept was originally proposed by Uchman & Wetzel
(2016) in a conference abstract and later applied to individual
trace fossils (Uchman & Wetzel 2017; Jurkowska et al. 2018;
Uchman & Rattazzi 2018; Uchman et /. 2019; Samanek
etal. 2022). Meanwhile the growing number of observations
on trace fossils showing such a nutritional strategy as well
as on modern counterparts impels us to address this type of
behaviour and its environmental implications systematically.

This is the purpose of the present paper.
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BACKGROUND

Organic matter available on the seafloor fuels benthic life
(e.g. Gage & Tyler 1991). In nearly all subaqueous envi-
ronments, organic matter delivery to and deposition on the
sediment surface fluctuates considerably due to seasonally
varying primary production (e.g. Smith ez a/. 2002, 2018;
Lutz et al. 2007). In addition, where water depth exceeds a
few hundred metres, the amount of organic matter arriving
on the seafloor decreases exponentially with water depth
due to oxidation while settling through the water column
(e.g. Suess 1980; Burdige 2006). The size and shape of the
organic particles influence settling velocity, and hence the
degree to which they become oxidized during transport;
large, rapidly settling particles are less affected than small
ones (e.g. Shaw ez al. 2020). In the deep sea, days to weeks
after a seasonal bloom in surface water organic matter
arrives as detritus on the seafloor, the benthos experiences
high food availability for a short period of several weeks to
a few months, followed by low organic matter input for a
longer time of several months or longer (e.g. Graf 1992;
Smith ez al. 2002). Commonly, organic matter is associated
with the clay fraction due to adsorption on clay mineral
surfaces and hydraulic sorting (e.g. Mayer 1999; Burdige
2006). At the sediment surface, a considerable proportion
of organic matter is oxidized so long as it is located within
the oxygenated zone (e.g. Smith ez a/. 1994, 2008; Tromp
et al. 1995). Therefore, organic matter burial is strongly
affected by sedimentation rate and only subordinately by
primary production (e.g. Miiller & Suess 1979; Stein 1991;
Burdige 2007). Increasing sediment deposition, however,
may dilute the organic matter content (e.g. Tyson 2001).
Two scenarios need to be distinguished concerning sedimen-
tation rate. At sedimentation rates exceeding ¢. 2 cm kyr-1,
organic matter is buried and anoxic conditions develop within
the deposits (e.g. Jung ez al. 1997). Below the threshold
value of 2 cm kyr-1, sediment accumulation is so low that
the deposits become completely oxidized, represented in
the rock record by oceanic red beds barren of organic mat-
ter (e.g. Wagreich & Krenmayr 2005; see also Jung ez 4.
1997). As long as organic matter (i.e., benthic food) is avail-
able, animals bioturbate these deposits and enhance the flux
of oxygen into the sediment, which in turn causes organic
matter oxidation (e.g. Wetzel & Uchman 2018). Nonethe-
less, below the sediment surface low-oxygenated to slightly
anoxic conditions may locally exist for some time in oceanic
red beds (e.g. Hartmann 1979; Berner 1981; Myrow 1990).
Such conditions prevail in the wide areas of the abyssal oceans.
When exposed to oxygen, the most reactive organic com-
pounds are degraded first (e.g. Nierop ez al. 2017). The
reactive compounds are preferentially utilized by benthic
animals because of the easily accessible nutritional value (e.g.
Rullkétter 2006). The higher the organic matter delivery to
the seafloor, the more intense is bioturbation (e.g. Boudreau
1998). Due to increasing bioturbation, the oxygenated zone
is expanded and the residence time of organic matter therein
(i.e., oxygen exposure time; Hartnett ez 2/. 1998) becomes pro-
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longed facilitating oxidation of organic matter (e.g. Smith &
Rabouille 2002; Burdige 2006). In turn, the delivered fresh
organic matter becomes dispersed within the surface mixed
layer (e.g. Boudreau 1998) and thus, relatively diluted. In
fine-grained, anoxic sediments, the oxic zone around burrows
ventilated with oxygenated water remains relatively thin, on
the order of 1-2 mm (e.g. Meysman ez al. 2010); the steep
geochemical gradient between tube water and host sediment
stimulates microbial activity (e.g. Kristensen & Kostka 2005).
During bioturbation, relatively labile organic matter from
the sediment surface is brought into close association with
more refractory material deeper in the sediment over a wide
range of time scales, depth scales, and geometries (e.g. Aller &
Cochran 2019). For instance, organic particles of different
reactivity and origin can be intermixed in a diffusion-like
manner (Gerino ez al. 1998; Meysman ez al. 2003). Bring-
ing together relatively labile and refractory organic matter
by bioturbation promotes the phenomenon referred to as
priming (Aller & Cochran 2019). Priming is defined as the
enhanced microbial remineralization (conversion to CO,)
of otherwise low-reactive (refractory) organics in association
with the decomposition of relatively reactive organic material
in soils, aquatic sediments and natural waters (Lohnis 1926;
Graf 1992; Hee ez al. 2001). In particular, the input of fresh
organic matter strongly stimulates microbial activity under
anoxic conditions and in sediments relatively low in reactive
organic matter; remineralization rates related to priming may
reach ¢. 30% (van Nugteren ez a/. 2009). Even low amounts of
organic mactter buried below the oxygenated zone in the anoxic
zone stimulate priming, and thus the activity of microbes; the
microbes and/or their metabolic products represent a food
source for burrowing animals (e.g. van Nugteren ez a/. 2009).
In addition, sequestered material can also be exploited indi-
rectly, probably by solutions and ectoenzymes. The enzymes
excreted by bacteria can be particularly active in burrows
(Boetius 1995). This leads to the transformation of particulate
organic matter into more labile or amorphous organic mat-
ter (cf. Boetius ef al. 1996; Bélanger e al. 1997; Cao er al.
2013; Aller & Cochran 2019) that can be more easily taken
up by the body surface of a burrowing animal. For instance,
the flatworm Paracatenula Sterrer & Rieger, 1974, can absorb
nutrition through its body surface (Jickle ez /. 2019). Some
invertebrates stimulate the flow of pore water around their
burrows by irrigation, and the nutritional organic matter can
be leached (Brand ez al. 2013), a process possibly also involv-
ing microbes, and utilized as food. All of this would reduce
the energy-costly sediment reworking by body movements.
Organic matter available on the seafloor fuels benthic life.
In oxygenated settings, benthic biomass decreases roughly
exponentially with depth in sediment (e.g. Rex ez al. 2006).
The benthic animals get their nutrition in various ways; among
them are opportunistic animals like holothurians that may
respond immediately to the input of food and ingest organic-
rich flocs as they arrive on the seafloor (e.g. Smith ez a/. 1986;
Lauermann ez al. 1997). Shallow-penetrating vagile echinoids
that plough through the sediment and mix it as they feed
within the surface mixed layer (e.g. Lohrer ez al. 2004; Wetzel
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2009). Some animals convey organic-rich material downward
below the mixed layer (e.g. Jumars ez al. 1990; Levin ez al.
1997), a behaviour that is addressed in detail below.

GENERAL CONCEPT

The concept of stowing behaviour is rather simple: Animals
collect organic-rich sediment or select organic particles on
the sediment surface or from suspension, transport the mate-
rial along their body or via their gut deep into the deposits
and store it there to be utilized during periods of low food
availability on the seafloor. Optimal storage conditions are
accomplished if the sequestered material is not exposed to
oxygenated water and if it is stowed below the intensely mixed
zone, and thus below the reach of other animals competing
for food. Although the general concept of sequestrichnia is
simple, various trace-fossil producers have developed many
ethological variants that differ in detail from one another
and provide niche-related specialization as explained by the
examples in the following.

Two general burrow morphologies are distinguished: spreite
burrows and tubular open burrow systems. For each category
an example is addressed in detail, whereas similar burrows of
the same category are only briefly dealt with. In each case, prin-
cipal aspects of burrow morphology, evidence of sequestration,
and subsequent utilization of stowed material are outlined.

SPREITE BURROWS

Ichnogenus Zoophycos Massalongo, 1855
(Fig. 1)

Zoophycos represents a regulatly to irregularly coiled, simple to
complex lobate spreite burrow that has shown changes in shape,
size, and geometry through the Phanerozoic (e.g. Seilacher
1977b; later refined by Chamberlain 2000 and Zhang ez .
2015). For most Zoophycos older than the late Mesozoic, dif-
ferent ways of spreite production and behaviour are possible,
including fodinichnial behaviour (e.g. Olivero & Gaillard
1996). In contrast, for Late Cretaceous to modern Zoophy-
cos, sequestrichnial behaviour of the producers appears to be
common. These are outlined here.

Evidence for sequestration of sediment on the seafloor is
given by the colour of the spreite fill in combination with
enlarged organic carbon values. The spreite consists of alter-
nating lamellae containing host sediment and material likely
sequestered on the seafloor and transferred downward; pellets
may occur in both types of lamellae (Fig. 1). The sequestered
sediment is commonly darker in greenish-grey host sediment
or grey in reddish host sediment. In both cases, the organic
carbon content of the spreite fill is higher than that of the
host sediment; for example, the black spreite material of Pale-
ocene Zoophycos (Gurnigel Flysch; Seligraben/Gurnigelbad,
Switzerland) contains 1.1-1.7% C,,, compared to 0.5-0.7%
Corg in the green host sediment (see Wetzel & Uchman 1998:
fig. 1d, ¢). In the Eocene of Arnakatxa Headland near Bilbao,
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0.3-0.7% C,,, occurs in grey spreite material and < 0.1% C,,
in red limestone lutite alternations. However, in deep oce-
anic settings, also lighter material deposited during periods
of enhanced nannoplankton productivity can be transferred
downward (Fig. 1A). Other tracers, e.g. volcanic ash, also
record a downward sediment transfer (e.g. Kotake 1991). For
Pleistocene and Holocene Zoophycos, chronometric age data
record a sequestration of surface material as the spreite fill is
generally younger than the host sediment (e.g. Léwemark &
Werner 2001; Leuschner ez 2/ 2002; Kiissner ez 2/. 2018). In
well-dated sediments, Zoophycos appears to be produced when
environmental conditions switch to a starved sedimentation
regime (Kissner er a/. 2018) or during times of enhanced
seasonality (e.g. Lowemark ez al. 2006; Wetzel er al. 2011;
Dorador et al. 2016).

The Zoophycos producer stows the sequestered material com-
monly in the form of mud lamellae or pellets in the spreite.
Pellets, however, occur in both host and sequestered sediment,
suggesting that they could have provided “seed” microbes housed
in the gut to the spreite “bioreactor” (Fig. 1C). Therefore, a
priming scenario appears realistic, in particular as subsequent
lamellae overlap previous ones, indicating partial reworking
and utilization of the spreite fill by the tracemaker (Fig. 1D).
Since Zoophycos represents very likely a lifetime burrow of
its producer (e.g. Wetzel & Werner 1980), the worm-like
tracemaker probably took advantage of priming on a time
scale of months to years.

Ichnogenus Polykampton Ooster, 1869

Polykampron occurring in Cretaceous (Albian) to Oligocene
deposits represents a horizontal median tunnel with lateral
spreite lobes, which alternate on either side of the tunnel and
are slightly inclined to bedding; the tunnel runs within the
interval of the spreite lobes or underneath (Uchman ez /.
2019). Polykampron is produced: 1) in the sandy or muddy
interval of (turbiditic) event beds; 2) along the mudstone-
sandstone interface; or 3) across the sandstone-mudstone
transition in turbiditic beds. The spreite and the main tunnel
contain mud that is enriched in organic matter compared to
the surrounding host sediment (C,,, 3.05% vs 1.05%; Uch-
man ez al. 2019). The mud was evidently introduced from
above into the burrow. The organic content of spreite lobes
could be a source of additional benthic food in the short term,
just after organic-rich material was sequestered on the surface
and stowed in spreite lobes. In addition, or alternatively, the
producer could utilize organic matter when passing through
the tunnel during the construction of a new lobe. By then,
the sequestered organic-rich material might have already been
altered to some degree by microbial activity.

Ichnogenus Tubulichnium Ksiazkiewicz, 1977
(Fig. 2)

Tubulichnium is an oblique to horizontal, unbranched, blind-

ending tube showing some internal organization due to slight
vertical shift; the margins are densely lined with ellipsoidal
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Fic. 1. — Sequestered and downward-transferred material in Zoophycos Massalongo, 1855: A, black mud and white nannofossil ooze displaced for > 26 (black
arrows) and > 23 cm (white arrows) downward, respectively, as indicated by colour and composition of sediment (Institute of Geological Sciences Kiel, Ger-
many, core 16867-3; 2.2°S, 5.1°E, 3894 m water depth, mid Atlantic; 16.56-16.99 m core depth); B, sequestered organic-rich grey sediment filling Zoophycos
spreite (white arrows) produced in red pelagic mud (Maastrichtian, Zumaia, Spain); C, homogeneous and pelleted sequestered sediment alternating with host
sediment in Zoophycos spreite; inset (C’) showing pellets occurring in both sequestered sediment (green arrows) and host sediment (yellow arrows) (DSDP
Leg 93, Site 605, Core 16-4, 59.5-66.5 cm core depth; for details see Wetzel 1987); D, truncation of lamellae (marked with red stippled lines) in Zoophycos
spreite in horizontal section, indicating reworking of previously emplaced material (Paleogene, Zumaia, Spain). Scale bars: 1 cm.

muddy pellets. The sequestration of material, which is then
stowed in muddy laminae and pelleted fill, is documented by
its composition: it contains ¢. 1.5% C,, and 20% CaCO;
compared to ¢. 1.1% C,, and ¢. 26% CaCOj in the host
sediment and 0.7% C,,, and 12% CaCOyj in the overlying
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mud in the studied Upper Cretaceous to Paleogene specimens
(Uchman & Wetzel 2017). These data point to selective enrich-
ment of organic-rich particles in the burrow. Microbial activity
during priming may generate CO, that lowers alkalinity and
fosters the dissolution of carbonate (van Nugteren ez 2/. 2009).

329



» Uchman A. & Wetzel A.

FiG. 2. — Tubulichnium Ksigzkiewicz, 1977 in turbiditic sand (Inoceramian Beds, Campanian-Paleocene, Magura Nappe, Stopnice, Poland): A, Tubulichnium
penetrating down into turbidite sandstone; typical lining with mud pellets. Depression (surrounded by a white stippled line) resulting from sediment collapse
after abandonment of the tube inhabited by the producer; B, C, traverse (B) and transverse oblique (C) sections of Tubulichnium. Pelletal laminae occurring at
the base of the burrow (white arrows) and also in intermediate position (yellow arrows); local truncation of pellet-rich layers indicating subsequent, perhaps
multiple reworking by the producer. Scale bars: 1 cm.

Although no clear spreite is developed, a partly laminated fill
exhibiting local truncations (Fig. 2B, C) suggests utilization
of the stowed material, as in the case of Zoophycos.

TUBULAR OPEN BURROW SYSTEMS
Ichnogenus Cladichnus D’Alessandro & Bromley, 1987

The Cladichnus burrow (Cretaceous-Eocene) consists of pri-
mary successively branched and radiating tubes, which contain
a meniscate fill. These traces are preferentially constructed
in anoxic sediments. New branches are produced roughly at
the same level as previous ones, implying that appropriate
conditions for stowing were encountered by the producer. In
contrast, new branches constructed below or above may target
stronger or weaker reducing conditions or represent a response
to the downward or upward migration of the redox boundary.

Collection and transfer of surface material is recorded by
the tubes’ fill that was analyzed in detail for the ichnospecies
Cladichnus parallelum Wetzel & Uchman, 2013, which con-
tains 0.8% C,,, and 0.3% CaCOj; compared to 0.3% C,,,
and 64% CaCOj in the host sediment Cretaceous in age
(Wetzel & Uchman 2013). The fill of the branches is inter-
preted to indicate priming that provided microbes (or their
metabolic products) as an additional subsurface food source
(cf. Mayer ez al. 2001; van Nugteren ez al. 2009).

Most likely, the trace producer ingested a considerable
proportion of the filling material before emplacing the final,
now meniscate fill. The arrangement of the branches has fur-
ther implications. Branches at a level above the previous ones
could allow utilization of upstreaming pore water, probably
carrying nutritious compounds. Alternatively, a shift of the
redox boundary may have caused the construction of new
levels of open burrows.

Ichnogenus Phymatoderma Brongniart, 1849
Phymatoderma (Lower Jurassic-Pliocene) appears to be similar

in some aspects to Cladichnus since it represents an actively
filled burrow system consisting of numerous branches, which
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deviate at a few levels from a common stem, diverging dis-
tally (e.g. Fu 1991; Izumi 2012). However, the producers
tended to operate in a plane or only a few levels, less than in
Cladichnus. In most cases, the branches are filled with pellets
that are darker than the surrounding material (e.g. Uchman
1999), suggesting a higher content of organic matter that
could foster enhanced microbial activity (e.g. Izumi ez .
2015). In black shales, in contrast, the pellets are lighter than
the host sediment but document incorporation of surface
detritus (Seilacher 1978; Izumi 2012).

Ichnogenus 7halassinoides Ehrenberg, 1944
(Fig. 3)

Crustaceans living in the modern deep South China Sea produce
Thalassinoides-like burrows that document a sequestrichnial
behaviour. Two kinds of burrows were encountered, which
contained abundant foraminiferal tests stowed in greenish anoxic
sediment. One burrow type contains benthic agglutinated
foraminifera tests, which consist mainly of Pinatubo-1991 ash
but were stowed below the ash in anoxic sediment (Kamin-
ski & Wetzel 2004). The other kind of 7halassinoides occurs
in water depths below the CCD; it exhibits a laminated fill
consisting of calcareous planktonic foraminiferal tests thatare
stowed and preserved in the burrow, whereas they are already
dissolved in the overlying hemipelagic sediment from which
they originate (Wetzel & Unverricht 2013). The calcareous
foraminiferal tests must have been stowed shortly after their
deposition; otherwise they would show dissolution features.
Partly truncated laminae in the burrow imply later reworking

by the producer (Fig. 3).

Ichnogenus Avetoichnus Uchman & Rattazzi, 2011
(Fig. 4)

Averoichnus (Paleocene-Oligocene) represents a mid-tier
burrow consisting of a mostly horizontal to subhorizon-
tal helix enveloping a central tube that was probably an
open tunnel when the tracemaker lived. The tube contains
grey mud, whereas the spiral is filled with black, probably
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organic-rich mud that likely originated from the overlying
pelagic sediment (Uchman & Rattazzi 2011). The tube
resembles a pinched open burrow that truncates the inner
edges of the helical turns, which were already filled with
dark mud when the tunnel was still inhabited. Chemichnia
like Chondrites co-occur with Averoichnus (Fig. 4).

The colour of the helical fill suggests that it was displaced
downward. Furthermore, the partial truncation of the inner
turns of the spiral points to later reworking by the tracemaker.
Very likely, the organic material in the spiral fostered the devel-
opment of reducing conditions therein whereas the central
tunnel was open and oxygenated water could be circulated
through it by the inhabitant. Thus, a steep geochemical gradi-
ent developed across the tunnel margin between anoxic host
sediment and oxic water in the lumen, a situation known to
enhance microbial activity (e.g. Meysman ez a/. 2010). Thus,
the trace-fossil producer sequestering organic-rich material
on the seafloor appears to have constructed an organic-rich
subsurface domain that rapidly became anoxic. Therefore,
this trace is classified as a sequestrichnion.

OTHER POSSIBLE SEQUESTRICHNIA

The burial of labile organic matter in anoxic sediments deep
below the surface mixed layer strongly suggests priming induced
by the trace producers, probably wormlike animals such as
echiurans, sipunculids, and polychaetes together with crusta-
ceans. Besides utilizing the sequestered burrow fill directly as
indicated by subsequent reworking, some trace-fossil producers
burrowed down and construct a cache underneath a domain,
which is already enriched in organic matter like seagrass or
wood (e.g. Griffis & Suchanek 1991; Bojanowski & Wetzel
2024). From this perspective, some other trace fossils could
also be sequestrichnia.

At least some specimens of the spreite burrow Teichichnus
zigzag Frey & Bromley, 1985 occurring in Jurassic deposits
record sequestrichnial behaviour (e.g. Wetzel ez al. 2023).
Teichichnus zigzag exhibits: 1) a spreite enriched in organic-
rich material relative to the host sediment; 2) no reworking
halo around the spreite (thus indicating that the organic
matter was introduced from above); 3) lamellae produced
later that systematically crosscut previously produced ones,
and hence indicate reworking by the producer. It can thus
be excluded that reworking represents a response to erosion
of the sediment surface, because reworking of the spreite
is locally restricted. Furthermore, in calm lagoonal bayfill
deposits, 7. zigzag is common (Knaust 2018). In these
settings, hyperpycnal flows may provide organic matter.
Therefore, a sequestrichnial behavior of the 7. zigzag trace-
makers in calm lagoonal settings is highly likely though it
has not yet been demonstrated.

Other spreite burrows, for instance Rbizocorallium com-
mune Schmid, 1876, are extensively filled with pellets. They
were produced in dysoxic, low-energy mud (Knaust 2013),
and could represent sequestrichnia. Unfortunately, TOC
data of the spreite fill and host sediment are not available
and, therefore, clear evidence of sequestrichnial behaviour is
lacking although it is not unlikely.
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Pinatubo-1991 ash

Hemipelagic sediment

e mixing by

Hemipelagic sediment

FiG. 3. — Thalassinoides Ehrenberg, 1944 filled with planktonic foraminifera
tests (downward displacement marked by a yellow arrow) in a sub-CCD
setting indicating rapid sequestration after deposition on the sea floor; inset
showing local truncation (red lines) of laminae (yellow lines), indicating sub-
sequent, probably multiple reworking by the producer. (RV Sonne cruise 114,
core 27-1, 0-21 cm sediment depth; 15°45.00°’N, 115°45.00’E, central South
China Sea, 4220 m water depth; for details see Wetzel & Unverricht 2013).
Scale bar: 1 cm.

Halimedides Lorenz von Liburnau, 1902, Cambrian (Series 2)
to Recent in age, is a system of horizontal tunnels with
chambers strung along it, not rarely in the context of poorly
oxygenated deposits (Ferndndez-Martinez ez al. 2021). When
preserved in full relief, the chambers are filled with darker
material than in the surrounding rock (e.g. Uchman 1999).
The chambers, which have been interpreted as food caches
(Gaillard & Olivero 2009; Lukeneder ez 2. 2012), could be
good places for microbial processing of organic matter.
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Lepidenteron mantelli (Geinitz, 1850) is a burrow in Upper
Cretaceous marls of the deeper continental shelf. It is filled with
sediment rich in plant material, which is strongly pyritized,
foremost with pyrite framboids (Jurkowska ez 2/. 2018). The
plant material was actively collected, was a substrate for microbial
activity and probably promoted priming. Therefore, this trace
fossil could be partly sequestrichnial and partly chemichnial.

Gyrophyllites Glocker, 1841, Cambrian(?) and Early Ordo-
vician to Cenozoic in age, is composed of a vertical to sub-
vertical shaft with lateral, radial, petal-like lobes that may be
repeatedly distributed at a few levels. The lobes may be filled
with organic-rich material from the underlying or overlying
bed, and their position at different levels was modulated by
the migration of the redox boundary (Strzeboriski & Uchman
2015; Mufoz et al. 2019). The fill of the lateral lobes could
promote microbial processing including priming. However, in
the case of Gyrophyllites, the mud appears to have been taken
not only from the seafloor but also from of a bed beneath
it, in cases where the proper mud was not present on the
seafloor, in particular if a decelerating, low-erosive gravity
flow rapidly deposited sand that covered and preserved the
previous seafloor including the topmost organic-rich interval.

Some Planolites Nicholson, 1873 from Cretaceous marls
was evidently filled actively with darker sediment from above
(Locklair & Savrda 1998), possibly to induce priming. As
Planolites can be produced by diverse organisms in a wide
range of environments, only certain representatives of this
ichnogenus might be sequestrichnia. Also, Alcyonidiopsis
Massalongo, 1856, a simple, cylindrical burrow filled with
pellets, commonly darker than the surrounding deposits, and
known at least since the Ordovician (see Uchman 1999) can
belong to sequestrichnia.

DISCUSSION

A synoptic comparison of the behavioural variants applied by
burrowing animals that accomplish a sequestrichnial nutri-
tional strategy helps to define the criteria to classify a trace
as a sequestrichnion.

A deep burrow or part of a burrow is enriched in organic-
rich matter, whereas the surrounding host sediment shows
no indication of sorting or reworking related to that burrow,
such as a halo consisting of sorted material. The material
enriched in organic matter must have intentionally been
introduced from above.

The downward-transferred, sequestered material contains
sedimentary tracers that unequivocally originated from the
contemporary seafloor, such as volcanic ash, microfossils
(providing at least relative ages), tektites, etc.

Active fill is indicated by menisci or (spreite) lamellae or
laminae.

Reworking of the sequestered material is recorded, for
instance, by truncated menisci or lamellae.

Not all these criteria are met in any one ichnotaxon. For
instance, even an evident sequestrichnion like Zoophycos does
not meet all the above criteria. As shown in Figure 1A, the
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Zoophycos spreite is filled with material definitely derived from
above, such as whitish nannofossil ooze, but is not enriched
in organic matter. In this case, the large amount of coccoliths
probably led to a dilution effect. Other doubtful cases may
result from later oxidation of organic matter, in particular in
the pelagic or hemipelagic oceanic red beds, which house Zoo-
phycoswith a red spreite surrounded by red host sediment, both
low in C,, (< 0.1%; Wetzel & Uchman 2012: fig. 5E G). In
this case, the sedimentation rate was probably so low that the
deposits were later completely oxidized, including the spreite.

The reworking of a previously formed burrow domain by
the tracemaker becomes evident by crosscutting of subse-
quently produced burrow fill elements such as menisci, spreite
lamellae, or the partially truncated helix of Avetoichnus. In
contrast, for trace fossils like Cladichnus, reworking by the
producer is not evident. However, it must be remembered
that only the last phase of trace production is preserved in
the sediment record. In the case of Cladichnus, it is possible
that the lumen fill was reworked before the final fill was
emplaced (see above), or the lumen fill acted as drainage for
porewater enriched in reductant compounds that could be
taken for nutrition if oxygen became available or symbionts
were housed by the trace producer (implying combined
sequestrichnial-chemichnial behaviour).

Microbial activity within the burrow fill is likely, but there
is no test to determine whether it occurred during the life of
the tracemaker or later. For instance, framboidal pyrite in the
Zoophycos spreite has been interpreted to indicate microbial
activity (e.g. Gong ez al. 2007). It is not known, however,
whether the sulphate-reducing microbes were already active
during burrow production or later. Similarly, there is no
proof that microbial activity was stimulated by the injec-
tion of labile organic matter to initiate priming. Nonethe-
less, priming occurs in every environment, and therefore is
impossible to exclude from marine environments (see above,
Background; van Nugteren ez a/. 2009). It appears that
priming represents a very efficient way to develop main or
additional food resources, because even low amounts of labile
organic matter can enhance microbial activity considerably
(e.g. van Nugteren ez al. 2009).

Sequestrichnial behaviour has existed at least since the Cam-
brian (Series 2) as marked by the occurrence of Halimedides
(Novis ez al. 2022). Cambrian occurrences of Gyrophyllizes are
not obvious, but they are confirmed from the Early Ordo-
vician (Mufioz et al. 2019). The occurrences of most other
sequestrichnia are related to the Mesozoic Marine Revolu-
tion in the deep sea, one of the consequences of which was
increased competition for food (Uchman 2004).

ENVIRONMENTAL IMPLICATIONS

Sequestrichnia evidently occur in settings characterized by
short periods of organic matter deposition on the seafloor,
for instance, after seasonal phytoplankton blooms in surface
waters followed by a comparatively long period of low benthic
food availability. Therefore, aside from pelagic environments,
this behaviour is also appropriate in settings experiencing
ephemeral deposition of organic-rich material and organic
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FiG. 4. — A-C, Field photographs of Avetoichnus luisae Uchman & Rattazzi, 2011 in the upper part of a turbiditic marl bed (Middle Eocene) at Zbludza, Magura
Nappe, Polish Carpathians. Note that in A, Avetoichnus co-occurs with other sequestrichnia, i.e., Zoophycos. Abbreviations: Av, Avetoichnus luisae; Cha, Chon-
drites affinis (Sternberg, 1833); Chi, Chondrites intricatus (Brongniart, 1828); Zo, Zoophycos Massalongo, 1855. Scale bars: 1 cm.

Fic. 5. — Chondrites Sternberg, 1833 exhibiting meniscate fill. Organic-rich mud arranged in menisci implies sequestrichnial behaviour of the producer: A, Chon-
drites filled with material finer than the host sediment (ch). Chondrites crosscuts Planolites Nicholson, 1873 (P). X-ray radiograph, negative: mud, dark; silt and
sand, light. Institute of Geological Sciences Kiel, Germany, core 13250-1, 22-25 cm, 15°42.2’N, 17°32.7°'W, 1680 m water depth (for details see Wetzel 1981);
B, thin section of the Chondrites (Ch) shown in (A) filled with sediment finer than the host sediment (h), providing clear evidence of meniscate fill. Some menisci
marked by red broken line. The same core as in A; C, Chondrites filled with material coarser than the host sediment. Organic-poor, silty fill arranged in menisci
(see D) implies a chemichnial behaviour (for details see text). X-ray radiograph, negative: mud, dark; silt and sand, light. Institute of Geological Sciences Kiel,
Germany, core 13239-1, 284-287 cm, 13°52.6’N, 18°18.8’'W, 3156 m water depth (for details see Wetzel 1981); D, thin section of the Chondrites (Ch) shown
in C, filled with sediment coarser than the fine-grained host sediment (h), providing clear evidence of meniscate fill (some menisci marked by red broken line).
For further details see Wetzel (1981). Scale bars: A, C, 1 mm; B, D, 0.5 mm.

debris carried by mass flows or gravity currents to levee or  decreases with water depth (see Background), sequestrich-
overbank settings of deep-sea fans (e.g. Khripounoff ez /. nial behaviour represents a more advantageous strategy with
2003; Vangriesheim ez a/. 2009; Mignard ez al. 2017). As  increasing water depth. Consequently, sequestrichnia occur
the amount of available benthic food settling to the seafloor  typically in the Zoophycos and the Nereites ichnofacies.

COMPTES RENDUS PALEVOL » 2024 » 23 (22) 333


https://www.openstreetmap.org/?mlat=15.7&mlon=-17.5333333333333#map=11/15.7/-17.5333333333333
https://www.openstreetmap.org/?mlat=13.8666666666667&mlon=-18.3#map=11/13.8666666666667/-18.3

» Uchman A. & Wetzel A.

Sequestrichnia are commonly emplaced in muddy sediment or
in sand covered by mud. For the conservation of organic matter,
amud cover provides the advantage of having low permeability
and diffusivity, hence the supply of electron acceptors for the
oxidation of organic matter is limited. The stowing of organic-
rich macterial deep within sediment, where oxygen is low or
has already been consumed, is optimal for its conservation, in
contrast to oxic conditions on or close to the seafloor. In both
oxic and anoxic host sediments, the downward transfer of labile
organic matter has a high potential to facilitate enhanced micro-
bial activity since priming is not limited to either oxic or anoxic
conditions (e.g. van Nugteren ez al. 2009; Aller & Cochran
2019). Consequently, the animals producing sequestrichnia
do some bioengineering by developing microenvironments in
and around the cache wherein labile organic matter is stowed.
In fact, such a cache represents the transition to chemichnia.
The producers of the latter, however, are interpreted to feed on
microbes or their metabolic products, and, importantly, they have
not stimulated microbial activity by “injecting” labile organic
matter (deep) into the sediment. However, the fill of Chondrites
represents an ambiguous case because morphologically similar
Chondprites can exhibit a meniscate or homogeneous fill, coarse
or fine-grained, and even hollow burrows have been observed
in Recent sediments (Wetzel 1981, 2008; Fig. 5). Only Chon-
drites showing a meniscate fill consisting of organic-rich mud
suggests sequestrichnial behaviour, whereas coarse-grained fill
or empty burrows may be typical of chemichnia.

Sequestrichnia considerably contribute to bioturbation as
particles are transferred through considerable vertical dis-
tances (“non-local mixing”, e.g. Boudreau 1986; Boudreau &
Imboden 1987). Thus, sequestrichnial behaviour causes dis-
turbance of the stratigraphic layering, including palacoenvi-
ronmental and palacoceanographic signals (e.g. Levin ez al.
1997; Kaminski & Wetzel 2004).

Furthermore, geochemical processes are considerably affected
by the transfer of labile organic matter downward by induc-
ing priming at the cache site, and finally by the ventilation
of the inhabited burrow by oxygenated water, which fosters
enhanced microbial activity (e.g. Meysman e a/. 2010).

CONCLUSIONS

Seasonally varying primary production affects wide regions
of the oceans today and very likely did also in the past. In
particular, in oligotrophic deep-sea settings, seasonal fluctua-
tions in organic macter delivery require a survival strategy for
the benthos. Sequestrichnia appear to record an appropriate
behaviour of their producers: 1) collecting (labile) organic
matter on the seafloor or from suspension; 2) transferring it
downward; 3) stowing it in a subsurface cache; and 4) utiliz-
ing it during times of shortage in benthic food.

Sequestrichnia typically occupy a mid- to deep-tier posi-
tion, commonly in anoxic sediment. The sequestered mate-
rial is commonly stowed in anoxic sediment domains below
the oxic surface mixed layer. Their fill is arranged in pellets,
a spreite, menisci, or a mixture thereof.
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The transfer of labile organic matter deep below the surface
can considerably enhance the remineralization of organic matter
by microbes, called priming; in turn, further nutritional organic
compounds such as microbes and their metabolic products
become available as food for the producers of sequestrichnia.

As the amount of available benthic food decreases with
water depth, sequestrichnial behaviour becomes a more
advantageous strategy with increasing water depth. Conse-
quently, sequestrichnia occur typically in the Zoophycos and
the Nereites ichnofacies.
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