General Paleontology, Systematics and Evolution (Vertebrate Palaeontology)

The fossil American lion (Panthera atrox) in South America: Palaeobiogeographical implications

Le lion américain fossile (Panthera atrox) en Amérique du Sud : implications paléobiogéographiques

Nicolás R. Chimento, Federico L. Agnolin

Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Avenue Ángel Gallardo 470, 1405DJR Buenos Aires, Argentina

Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología, Universidad Maimónides, Hidalgo 775, 1405DJR Buenos Aires, Argentina

ARTICLE INFO

Article history:
Received 6 October 2016
Accepted after revision 18 June 2017
Available online 13 November 2017

Handled by Lars vanden Hoek Ostende

Keywords:
Patagonia
Cave Lion
Panthera atrox
Panthera onca mesembrina
Late Pleistocene

ABSTRACT

By the late 19th and early 20th centuries, authors described several specimens belonging to a very large felid, the size of a lion, from some Late Pleistocene localities at southern Chile and Argentina. These remains were considered as belonging to large and now extinct subspecies of jaguar. In the present contribution based on qualitative and quantitative postcranial and cranial characters, we conclude that the “Patagonian Panthera” should be considered as representing remains of the American Cave Lion Panthera atrox. Evidence at hand indicates that Panthera atrox was a very large lion-like felid, with reddish skin, that inhabited open habitats. Furthermore, in contrast to living jaguars, transported and accumulated its preys in rocky dens. The presence of at least two pantherine lineages (i.e. P. onca and P. atrox) in the Pleistocene of South America indicates that the lineage has a long and complex history in the New World, and that the history of the clade in this landmass is still far from being well understood.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

À la fin du XIXe siècle et au début du XXe, des auteurs ont décrit plusieurs spécimens appartenant à un très grand féliné, de la taille d’un lion, dans différentes localités du Pléistocène supérieur du Chili méridional et d’Argentine. Ces restes ont été considérés comme appartenant à une sous-espèce de grande taille du jaguar, aujourd’hui disparue. Dans le
présumé, sur la base de caractères crâniens et post-crâniens, à la fois qualitatifs et quantitatifs, que la « Panthera patagonienne » devrait être considérée comme représentant les restes du lion des cavernes américain, Panthera atrox. Il est évident, sur la base des éléments en notre possession, que Panthera atrox était un très grand félin de type lion à pelage rougeâtre, habitant les zones sèches ouvertes. Au contraire des jaguars actuels, il transportait et accumulait ses proies dans des tanières rocheuses. L’existence d’au moins deux lignées de panthères (c’est-à-dire P. onca et P. atrox) dans le Pléistocène d’Amérique du Sud indique que la lignée a une histoire longue et complexe dans le Nouveau Monde, et que celle du clade est encore loin d’être bien comprise dans ce continent.

1. Introduction

Panthera atrox Leidy, 1853, has frequently been considered as an exclusively North American lion, closely related to the extinct Eurasian cave lion (Panthera spelaea) and the extant African lion (Panthera leo) (Barnett et al., 2009; Christiansen, 2008b; Christiansen and Harris, 2009; Kurtén, 1965, 1973, 1985; Turner and Antón, 1997). Furthermore, some authors consider that P. atrox is a mere subspecies of P. leo (Anderson, 1989; Burger et al., 2004; Diedrich and Rathgeber, 2012; Kurtén and Anderson, 1980; Montellano-Ballesteros and Carbot-Chanona, 2009; Nagel et al., 2003; Turner and Antón, 1997). On the contrary, some authorities proposed that was more nearly related in skull shape to the living South American Jaguar (P. onca) (Christiansen and Harris, 2009; Merriam and Stock, 1932; Simpson, 1941). This uncertainty is probably due to the strong similarities shared by the four living species of the genus Panthera, which are difficult to distinguish because of their strong osteological homogeneity. In fact, the skulls of living tigers and lions are nearly indistinguishable (Christiansen, 2008a; Sunquist and Sunquist, 2002), and thus, the taxonomy of pantherines is far confusing. However, the recent detailed analysis of craniomandibular morphometric and anatomical evidence published by Christiansen and Harris (2009) allow distinguishing, based on quantitative and qualitative characters, the four living species of the genus (i.e., Panthera leo, P. atrox, P. onca, P. tigris).

Roth (1899) described the remains of a large felid from the Late Pleistocene of “Cueva del Milodón”, in Última Esperanza, southern Chile. These specimens were collected by expeditions of the collector Rodolfo Hauthal to Patagonia. In the original description of these remains, Roth (1899) coined the new name Iemish listai, which consisted on isolated postcranial remains. This genus was considered by Roth as the largest felid from South America, and he completed his description of this mysterious animal with some local traditions and legends regarding its external aspect and behavior. Later, Nordenskjold (1900) and Smith Woodward (1900) based on new fossil remains and the re-study of some of the specimens, concluded that Iemish was nearly related or belonged to the genus Felis. Lately, Roth (1904) reviewed all available evidence and hypothesized that this large felid belonged to a giant species of the genus Felis comparable in size with the African lion F. leo. Thus, he eliminates the name Iemish and renamed the felid as Felis listai. Posteriorly, Cabrera (1934) re-analyzed Roth’s specimens and concluded that they belonged to a large extinct subspecies of the extant jaguar F. onca. Furthermore, he found that F. listai (Roth, 1899) was a not an available name and re-named it as Felis onca mesembrina. Since this influential work, the large extinct felid from Patagonia was considered as a subspecies of extant Jaguar, a criterion followed by all subsequent authors.

The aim of the present paper is to review all available evidence regarding Felis onca mesembrina, to evaluate its phylogenetic affinities and its validity as a subspecies of Panthera onca.

Institutional abbreviations. CFA-Ma, Colección de Mastozoología, Fundación de Historia Natural “Félix de Azara”, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; MACN-Ma, Departamento Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina; MLP, Colección Paleontología Vertebrados, Museo de La Plata, Buenos Aires, Argentina.

2. Referred material

Roth (1899) described as belonging to Iemish listai from the Caverna del Mylodon in Última Esperanza the distal end of right humerus, distal end of incomplete right femur, two incomplete metatarsals, and possibly a fragmentary pelvis (see also details in Smith Woodward, 1900). Later, the same author (Roth, 1904), referred the anterior half of a skull, two incomplete mandibles, isolated teeth, ribs, and claws. Moreover, he found isolated portions of skin that belong to this species (Roth, 1904; see also Lehmann-Nitsche, 1899). The skull and one of the mandibles were later described in more detail by Cabrera (1934). Regrettably, the skull, which constituted the holotype of Felis onca mesembrina Cabrera, 1934 (MLP 10-90) is currently lost (Prevosti and Reguero, 2000). Additional material was mentioned by Emperaire and Laming (1954), consisting on a left maxillary fragment.

More recently, several authors found isolated material referred to P. onca mesembrina. Nami (1985; see Nami and Menegaz, 1991; Prieto, 1991) illustrated a left mandibular ramus coming from the Cueva del Medio, at Última Esperanza, Chile. From the same site, Nami and Menegaz (1991) also report an isolated metatarsal and a left M2. From Cueva de Sofía Lake, Última Esperanza, Chile, Martin (2008, 2013) described an incomplete right mandible, left maxilla, left i3 of juvenile specimen, and a left P4 of adult individual. From Cueva de los Chingües, Pali Aike, Chile,
Martin (2013) described a left anterior portion of a juvenile jaw of "F. o. mesembrina". A large felid claw from the same site may be referred to "F. o. mesembrina" (San Roman et al., 2000). Furthermore, Borrero (2001) illustrated feces of F. o. mesembrina, coming from the Caverna del Mylodon in Ultima Esperanza. A single isolated metatarsal was recovered in Tres Arroyos 1 site (Latorre, 1998; Martin, 2013; Massone, 2004; Massone et al., 1998) at Tierra del Fuego, Argentina. Further material was recovered in Cueva del Puma, at Pali Aike, Chile (Martin et al., 2004), but a detailed information is still wanting.

All the fossil material comes from Late Pleistocene strata, and available dates indicates it was present by 11.085 ± 70 AP (Massone, 2004), 10.840 ± 60 AP (Martin, 2012), and 13.560 ± 180/10.200 ± 400 AP (Tonni et al., 2003).

The most relevant specimen of "F. o. mesembrina" is the holotype skull MLP 10-90. This material was studied in detail by Roth (1904) and Cabrera (1934) whom figured the skull in dorsal and ventral views, and give a large amount of cranial measurements, but this specimen is currently lost (Prevosti and Reguero, 2000). Thus, our comparisons and interpretations on skull morphology of "F. o. mesembrina" must rely on Roth (1904) and Cabrera (1934) measurements, illustrations, photographs, and descriptions.

Material examined. MLP 94-VIII-10-92, third upper premolar (P3); MLP 94-VIII-10-13, posterior fragment of hemimandible; MLP 94-VIII-10-15 (previously under collection number MLP 10-96), distal fragment of right humerus; MLP 94-VIII-10-16, distal end of metapodial; MLP 94-VIII-10-17, fourth left metatarsal; MLP 94-VIII-10-69, incomplete sacrum; MLP 94-VIII-10-70, isolated claw; MLP 94-VIII-10-71, fragment of skin; MLP 94-VIII-10-91 (previously under collection number MLP 10-93), first lower molar (m1) with part of maxillary bone; MLP 94-VIII-10-93, isolated non-ungual phalanx.

3. Description

In this section, we briefly describe the more remarkable features of each analyzed element of "Felis onca mesembrina", and we made special reference to the traits that are taxonomically relevant. It is worthy to note that, as indicated above, and recognized by most authors (e.g., Cabrera, 1934; Roth, 1904), specimens of "F. o. mesembrina" are very large and robust, comparable only with lions and related taxa of the genus Panthera (i.e., Panthera leo, P. atrox, P. spelaea, P. tigris), and thus, main comparisons are carried out with these species (Fig. 1).

Specimen MLP 94-VIII-10-92. It corresponds to a complete left P3. It presents a narrow cingulum along labial and lingual sides of the crown. Both cingula contact each other at the distal margin of the tooth. On the lingual side the cingulum is lingually projected at the metastyle level. The mesial cusp (parastyle) is very low and is located at the lingual edge. The main cusp (paracone) is large, conical, and presents a strong crest in the mesial and distal margins. The distal cusp (metacone) is taller that the anterior cusp, and is located in the central surface of the crown. In the distal end of the crown, the junction of the lingual and labial cingula forms a prominent shelf (Fig. 2A–C).

![Figure 1](image-url)
Fig. 1. The skulls of “Panthera onca mesembrina” in palatal (A); and dorsal (B) views. Scale bar: 100 mm
Fig. 1. Crâne de « Panthera onca mesembrina » en palatale (A) ; et dorsale (B) vues. A, selon Roth (1904), B, selon Cabrera (1934). Barre d'échelle : 100 mm.
Table 1
Measurements (in mm) of the Panthera lineage in the New World.

<table>
<thead>
<tr>
<th>Panthera onca mesembrina</th>
<th>Panthera atrox</th>
<th>Panthera onca fossils NA</th>
<th>Panthera onca fossils SA</th>
<th>Panthera onca</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQ (mm)</td>
<td>150 151</td>
<td>151 152</td>
<td>151 152</td>
<td>151 152</td>
</tr>
<tr>
<td>PQ (mm)</td>
<td>132 132</td>
<td>132 132</td>
<td>132 132</td>
<td>132 132</td>
</tr>
<tr>
<td>APD c (mm)</td>
<td>21 21</td>
<td>21 21</td>
<td>21 21</td>
<td>21 21</td>
</tr>
<tr>
<td>LLD c (mm)</td>
<td>13 13</td>
<td>13 13</td>
<td>13 13</td>
<td>13 13</td>
</tr>
<tr>
<td>LLD p3 (mm)</td>
<td>15 15</td>
<td>15 15</td>
<td>15 15</td>
<td>15 15</td>
</tr>
<tr>
<td>LLD p4 (mm)</td>
<td>13 13</td>
<td>13 13</td>
<td>13 13</td>
<td>13 13</td>
</tr>
<tr>
<td>APD m1 (mm)</td>
<td>30 30</td>
<td>30 30</td>
<td>30 30</td>
<td>30 30</td>
</tr>
<tr>
<td>LLD m1 (mm)</td>
<td>14 14</td>
<td>14 14</td>
<td>14 14</td>
<td>14 14</td>
</tr>
<tr>
<td>APD C (mm)</td>
<td>28 28</td>
<td>28 28</td>
<td>28 28</td>
<td>28 28</td>
</tr>
<tr>
<td>LLD C (mm)</td>
<td>24 24</td>
<td>24 24</td>
<td>24 24</td>
<td>24 24</td>
</tr>
<tr>
<td>APD P3 (mm)</td>
<td>24 24</td>
<td>24 24</td>
<td>24 24</td>
<td>24 24</td>
</tr>
<tr>
<td>LLD P3 (mm)</td>
<td>13 13</td>
<td>13 13</td>
<td>13 13</td>
<td>13 13</td>
</tr>
<tr>
<td>MHB (mm)</td>
<td>45 45</td>
<td>45 45</td>
<td>45 45</td>
<td>45 45</td>
</tr>
</tbody>
</table>

Remarks. In spite that the P3 lacks relevant taxonomical traits, its total length (24.76 mm) corresponds to the size range of *P. atrox* (*Harington, 1971; Kurtén, 1965; Merriam and Stock, 1932*) and is outside to the range of the *P. onca* (recent and fossil) of North and South America (*Cabrera, 1934; Jefferson, 1983; Kurtén, 1965, 1973; Simpson, 1941: Table 1).

Specimen MLP 94-VIII-10-91. It is a complete right m1 with a fragment of the dentary bone. The cusps are complete and present some wear. The mesial cusp
is cave 854 traits in nation (general capitulum the ness sharp, cusp sil distal form. in nearly 2014; medial paraconid atrox MLP. The morphology of the m1 crown in species of Panthera is very similar among all species, being the size the main difference between P. atrax and P. onca (Carbot-Chanona and Gómez-Pérez, 2014; Kurtén, 1965, 1973, 1985; Merriam and Stock, 1932; Montellano-Ballesteros and Carbot-Chanona, 2009; Whitmore and Foster, 1965). The morphology of the m1 crown in species of Panthera is very similar among all species, being the size the main difference between P. atrax and P. onca (Carbot-Chanona and Gómez-Pérez, 2014). In spite to that, a paraconid much shorter than the protoconid is a trait typical of most P. atrax specimens (Merriam and Stock, 1932; Montellano-Ballesteros and Carbot-Chanona, 2009), while in Panthera onca the paraconid is nearly equal in size to the protoconid.

Specimen MLP 94-VIII-10-15. It is a well-preserved distal end of right humerus. In anterior view, a large elongated supracondyloid foramen is present proximally to the medial epicondyle. In P. onca, this foramen is proportionally smaller and is located at the level of the epicondyle. The capitulum and trochlea are well developed, and the proximal margins of trochlea and capitulum are at the same level. In P. onca the trochlea is much smaller than the capitulum, and the proximal edge is low. The medial epicondyle is well developed, being anteroposteriorly expanded. In posterior view, the large olecranon fossa shows a well-developed lateral edge delimited in part by an acute and prominent proximodistal ridge. In distal view, the lateral ridge of the capitulum does not possess the medial invagination observed in Panthera onca. The lateral epicondyle is nearly smooth, whereas in P. onca it forms a shelf-like platform. The lateral epicondyle crest is straight, and in lateral view, is very high and anteriorly directed.

Remarks. Harington (1969) enumerated four humeral traits typical of the humerus of P. atrax: (1) general robustness comparable to Smilodon and Homotherium; (2) great anteroposterior expansion of the medial epicondyle; (3) sharp, posteriorly directed crest below the medial epicondyle when the specimen is viewed laterally; and (4) the outward flair of the lateral condyloid crest, which is concave to straight in Smilodon. All these features are present in MLP 94-VIII-10-15, but are absent in Panthera onca. Additionally, as indicated above, the general shape of the distal trochlea, the form and size of the supracondyloid foramen, the ridge delimiting the lateral edge of the olecranon fossa, and the morphology of the lateral epicondylar crest in lateral view, are features that may prove useful to differentiate P. atrax from P. onca (Fig. 3).

Specimen MLP 94-VIII-10-69. It is an incomplete sacrum preserving the first two vertebral centra and the left apophysis of the first sacral vertebra. The sacrum is proportionally more robust than that of P. onca, and similar to that of P. leo. The prezygapophyses are strong, and reach the level of the spinal process, in a similar fashion to P. atrax (Merriam and Stock, 1932). Both large anterior dorsal foramina are observed. The anterior articular surface with ilium is stout and proportionally wide. In ventral view two large anterior foramina are present. In anterior view, only part of the centrum surface is preserved; the neural canal is transversely wide and dorsosventrally low. The articular surface and prezygapophyses are dorsally projected, more than in P. onca, and in a similar fashion to P. leo and P. atrax (Merriam and Stock, 1932). In sum, the proportions and the general features of MLP 94-VIII-10-69 are similar to those of P. atrax and P. leo, and differ from those of the smaller P. onca (Fig. 4).

Specimen MLP 94-VIII-10-17. It is a nearly complete left metatarsal fourth. This element is large and robust. In anterior and medial views, the cuboid facet is straight (convex in P. onca). In medial view, the dorsal facet for metatarsal III is observed. This facet is proportionally larger and more distally extended than in P. onca. The dorsal facet for metatarsal V is flat and proportionally large. In proximal view, this facet is rounded, being similar in this aspect to P. onca. In lateral view, the dorsal metatarsal V facet is more proximally projected than in P. onca. In lateral and medial views, the shaft is nearly straight, contrasting with the bowed condition of P. onca. In the proximal half of shaft, the ventral side presents an oval-shaped, large, and rugose surface, with well-defined edges. In contrast, in P. onca this surface is feebly developed. The distal end in distal view, shows subparallel medial and lateral edges, while that in P. onca both margins are posteriorly divergent projected (Fig. 5).

Remarks. The proportions of MLP 94-VIII-10-17 are similar to those of the remains of P. atrax described by Merriam and Stock (1932). In spite to that the size of present specimen (111.2 mm) is slightly lower than the range noticed for P. atrax (166.9–135.1 mm), it is far larger than the values reported in fossil and living P. onca (see Kurtén, 1965).

Other analyzed specimens (MLP 94-VIII-10-13, MLP 94-VIII-10-16, MLP 94-VIII-10-70, MLP 94-VIII-10-71, MLP 94-VIII-10-93; Fig. 6) lack diagnostic characters and are referred to P. atrax only because of their large size, being larger than specimens of P. onca.

Remarks on skull remains referred to P. o. mesembrina: The cranial and dental remains from Patagonia formerly referred to "Felis onca mesembrina" are similar to those of P. leo and P. atrax, and differ from P. onca and P. tigris based on some diagnostic features recognized by Christiansen and Harris (2009). Regrettably, as explained above, the more relevant specimens are currently lost, including a well-preserved skull and some complete mandibles illustrated and described in detail by Roth (1904) and Cabrera (1934). Thus, the analysis of cranial and mandibular characters that follows is based on data published by those authors.

In dorsal view, the nasals of P. leo and P. atrax withdrawn from the narial basin. This results in that the incisive foramina are clearly visible in dorsal view, usually exposed
Fig. 3. Right humerus (MLP 94-VIII-10-15) from Cueva Última Esperanza compared with recent specimens of Panthera onca in anterior (A–D), posterior (E–H), distal (I–L), medial (M–P), and lateral views (Q–T). Arrows and numbers indicate features discussed in the text: 1, relationship between the proximal margins of trochlea and capitulum; 2, presence/absence of a well-developed ridge delimiting the lateral edge of the olecranon fossa; 3, presence/absence of the medial notch in the lateral ridge of the capitulum; 4, anteroposterior expansion of the medial epicondyle; 5, morphology of the lateral epicondylar crest in lateral view. Abbreviations: ca: capitulum; le: lateral epicondyle; lec: lateral epicondylar crest; me: medial epicondyle; of: olecranon fossa; tr: trochlea; sf: supracondylar foramen. A, E, I, M, Q, MLP 94-VIII-10-15; B, F, J, N, R, CFA 12823; C, G, K, O, S, MACN 51147; D, H, L, P, T, MACN 29.911. Scale bar: 20 mm

Fig. 4. Sacrum MLP 94-VIII-10-69 (A, D, G, J) compared with living Panthera leo [B, E, H, K] and Panthera onca (C, F, I, L) in dorsal (A–C), ventral (D–F), anterior (G–I), and posterior views (J–L). Abbreviations: adf: anterior dorsal foramen; avf: anterior ventral foramen; prz: prezygapophysis; 1: distance between the neural spine and the lateral edge of the prezygapophysis. B, E, H, K, MACN 22.3; C, F, I, L, MACN 29.911. Scale bar: 20 mm.

On most of their length. On the contrary, in P. onca and P. tigris the incisive foramina are totally obscured by the nasals, or only the anterior tip is exposed when viewed dorsally (Christiansen and Harris, 2009). In the photographs of skull published by Cabrera (1934: plate IV) illustrating "F. o. mesembrina", the incisive foramina are clearly visible in dorsal view in most of their length. Furthermore, the nasals are short and caudally retracted, and the narial opening is wide and with a convex dorsal margin. This nasal retraction and correlated large narial aperture are traits also present in P. leo and P. atrox, being absent in living P. onca (Christiansen and Harris, 2009).
Another feature distinguishing the snout of *P. leo* and *P. atrox* from *P. onca* and *P. tigris* consists on its gross shape. In dorsal view, the snouts of *P. onca* and *P. tigris* are short and heavy, and widen progressively towards the anterior margin of the premaxilla. This results in snout margins laterally concave when viewed dorsally. On the contrary, in *P. leo* and *P. atrox* the snouts are longer, and taper slightly towards the anterior margin of the premaxilla, which
results in laterally straight or slightly convex snout margins (Christiansen and Harris, 2009). In the photographs of the skull of “F. o. mesembrina” published by Cabrera (1934: plate IV), and Roth (1904: plate I, figure 2) the snout condition of this taxon is indistinguishable from that of P. leo and P. atrox.

There are some features in the mandibles referred to “F. o. mesembrina” that ally it with P. atrox, and distinguish it from other felids. As for example, the ventral margin of the mandibular ramus is convex on its mid-section, a condition present in P. leo, P. onca, and P. atrox, but absent in P. tigris (Bole, 1906; Christiansen and Harris, 2009; Whitmore and Foster, 1965). In the complete anterior dentary described and illustrated by Nami (1987) and Martin (2013) the mandibular symphysis is clearly set off from the horizontal ramus, a condition that distinguishes P. atrox from P. leo (Christiansen and Harris, 2009). Furthermore, it may also be distinguished from P. leo in having a non-tapering anterior end, and larger c1 alveolar width (Christiansen and Harris, 2009; see above).

Regarding the dentition, most features used by previous authors with the aim to distinguish species within Panthera have been proven strongly variable within each species by Christiansen and Harris (2009), and most dental measurements show at least partial overlapping among the species. However, Christiansen and Harris (2009) noted that in some proportions P. atrox and P. leo can be distinguished from tigers and jaguars. Although dental material is scarce in “F. onca mesembrina”, some of these dental proportions can be checked in available specimens. The lower first molar shows a protoconid height relative to molar length ratio of 0.56, a number within P. atrox and P. leo ranges, far from P. onca, which shows proportionally smaller protoconid (Christiansen and Harris, 2009).

In addition, there are several measurements that may allow inclusion of “F. o. mesembrina” within P. atrox. The anteroposterior length of p3 range in P. atrox is of 17–21.6 mm (Kurtén, 1965; Merriam and Stock, 1932), whereas the size is much smaller in P. onca, which ranges from 11.8–16.9 mm. In the only available specimen of “F. o. mesembrina” is of 20 mm (Roth, 1904), being within the P. atrox range. The anteroposterior length of p4 range in P. atrox is of 25.8–32.3 mm (Merriam and Stock, 1932; Kurtén, 1965), in the only available specimen of “F. o. mesembrina” is of 24 mm (Roth, 1904), whereas the size is smaller in P. onca, which ranges from 19–23.2 mm (Kurtén, 1965). Finally, the anteroposterior length of m1 in P. atrox ranges from 25 to 33.7 mm (Carbot-Chanona and Gómez-Pérez, 2014; Kurtén, 1965, 1985; Merriam and Stock, 1932 Montellano-Ballesteros and Carbot-Chanona, 2009; Whitmore and Foster, 1965), between 26–31 in “F. o. mesembrina” (Cabrera, 1934; Roth, 1904), and from 18–24.8 mm in P. onca (Cabrera, 1934; Kurtén, 1965, 1973; Simpson, 1941). The upper canine alveolar width of “F. o. mesembrina” (24 mm) is within the range of P. atrox, different from the smaller canines known for P. onca and P. leo (Christiansen and Harris, 2009).

In sum, qualitative characters, proportions of dental elements, and size of teeth indicate that “F. o. mesembrina” is within the range of variation of P. atrox, and differs from other pantherines, including the jaguar Panthera onca (Table 1 and Fig. 7). Thus, on this basis, we here propose that
Panthera onca mesembrina (Cabrera, 1934) should be considered as a junior synonym of Panthera atrox (Leidy, 1853).

4. Discussion

Body Mass estimation. The size of the m1 in the felid is the classic best gauge of body mass (Legrand and Roth, 1988; Van Valkenburgh, 1990). We calculated the body mass (BM) of F. o. mesembrina using the m1 measurements, following the proposal of Van Valkenburgh (1990) with the formula:

\[
\log BM = 3.05 \times \log m1L - 2.15 = 231.2
\]

We determined a body mass of 231.21 kg for “Panthera onca mesembrina”. This value is well within the range of the males of Panthera atrox (Wheeler and Jefferson, 2009), whereas the values are much smaller in Panthera onca (Christiansen and Harris, 2005; Prevosti and Vizcaíno, 2006). Further, this body mass is within the range of largest felids, such as Smilodon fatalis and S. populator (Christiansen and Harris, 2005).

Recently, Prevosti and Martin (2014) made a mass calculation of “P. onca mesembrina” based on some unpublished fossil remains. They obtained values between 190 kg to 243 kg, based on the length of m1 of different individuals (see Prevosti and Martin, 2014: Supplementary data 1). It is worth mentioning that the living P. onca shows values near 100 kg (102 kg sensu Sunquist and Sunquist, 2002), and exceptionally upper values of 158 kg (Seymour, 1989).

Further, the large extinct North American jaguar *P. onca* augusta, was 15 to 20% larger than living jaguar, being less than 190 kg (Seymour, 1989).

In this way, the mass calculation for “P. o. mesembrina” obtained by Prevosti and Martin (2014) and present paper points that the Patagonian Panthera was a felid that duplicates the size of living or extinct jaguars.
Additionally, based on body mass determination, it is possible to calculate the focused prey size of "P. o. mesembrina" on the basis of the following formula (Hemmer, 2004):

\[\text{log PFM} = 1.917 \times \text{log BM} - 1.710 = 663.4 \text{ kg} \]

This value is larger than that known for any living felid. In fact, the prey range in \textit{P. leo} is between 15 to 1000 kg, whereas the focused prey size is of 200 kg (Christiansen and Harris, 2005; Sunquist and Sunquist, 2002). The values here calculated for "P. o. mesembrina" are within the range of ratios calculated for \textit{Smilodon} (Christiansen and Harris, 2005; Prevosti and Vizcaíno, 2006; Sunquist and Sunquist, 2002).

On the other hand, the jaguar is a felid with a calculated maximum prey size of 582 kg (Prevosti and Vizcaíno, 2006), that preys upon large to mid-sized animals using ambush or stalk-short chase strategies (Eisenberg and Redford, 1999). In this regard, analyses regarding the paleoecological relationships of carnivorous and herbivorous mammals in the Pleistocene considered the "P. o. mesembrina" remains from Patagonia as belonging to living jaguar species, and consequently, were regarded as having the same prey-range (or a bit larger) than living specimens (e.g., Fariña, 1995; Fariña et al., 2013; Prevosti and Vizcaíno, 2006). However, Borrero (1994, 1997, 2001) and Borrero and Martin (1996) reported several lines of evidence indicating that the "Patagonia Panthera" preyed upon much larger animals than living jaguars. These authors indicate that, in addition to fossil horses (\textit{Hippidion} sp.) and camelids, the extinct "F. o. mesembrina" predated upon Megafauna, such as \textit{Mylodon listai}, which had a mass of 1000 kg (Fariña et al., 1998), which is much larger than the previously calculated maximum prey size, in agreement with the prey range here proposed. In this line, Borrero (1994, 2001), and Borrero and Martin (1996) indicate the presence of tooth marks referred to "F. o. mesembrina" in a femur referable to \textit{Mylodon} coming from the site Dos Herraduras 3. In addition, Borrero (2001) illustrated and described from the “Cueva del Milodón” the presence of a large number of \textit{Myloodon} dermal ossicles in a coprolite referable to "P. o. mesembrina". Lately, Martin (2013) reported several \textit{Mylodon} specimens, including a skull, showing deep tooth marks in the hind margin of the parietales, that may referable to a giant felid, in all probability to "F. o. mesembrina" (Martin, 2013).

This evidence suggests that \textit{Panthera atrox} consumed very large preys, a fact that is in agreement with the prey size here calculated, and both indicate that this large felid may played a different paleoecological role than advocated previously.

Evidence of external aspect in Panthera atrox. \textit{P. atrox} is not an uncommon member of the North American Pleistocene mammalian fauna, and is frequent in a large number of Rancholabrean assemblages (Kurtén and Anderson, 1980). Despite that, the species was only known of the basis of skeletal elements. With the inclusion of Patagonian remains within \textit{P. atrox}, several lines of evidence allow us to recognize gross details of the external aspect in this species.

Lehmann-Nitsche (1899) mentioned the presence of some skin patches in the Pleistocene of “Cueva del Milodón” that pertained to “F. o. mesembrina”. Later, Roth (1904) described in detail a piece of skin adhered to the face and to the forelimb, as well as an isolated patch of leather. The skin of the face indicates a reddish brown tone (rufous), a color that constituted the background of available skin patches from the limbs and body (Fig. 8). Additionally, based on these remains, Roth (1904) indicates that the species probably exhibited dark and some yellowish color stripes, at least in the forelimbs.

In the same line of evidence, Cardich (1979, 1987) reported the illustration of a jaguar-like felid from the El Ceibo site, Santa Cruz province, Argentina. This author found among a large number of guanaco silhouettes and human hand representations, a very large feline illustration. This representation is very large (1.5 meters long) when compared to those of other animals found in the same site, suggesting that this taxon had some impressive aspect for the native people (Cardich, 1979). The coloration of the drawing includes a reddish background, with some black spots, and the forearm is slightly lighter than the rest of the body. This coloration is totally concordant with the small skins samples found in the “Cueva del Milodón”, and very probably pertain to the same taxon (Borrero, 2001; Cardich, 1979).

In sum, the patchy evidence here reported may allow us to recognize main coloration patterns for \textit{P. atrox}. This felid was externally jaguar-like, with the body covered by black spots, but differed in having a deep reddish background and yellowish striped forelimbs.

Notes on the behavior of Panthera atrox. Regarding behavior, most evidence on the habits of \textit{P. atrox} comes from the Rancholabrean deposits, and most data comes from skeletal frequencies and recognition of sexual dimorphism (see details in Wheeler and Jefferson, 2009).

\textit{P. atrox} was described as a giant jaguar by Merriam and Stock (1932), Cabrera (1941), Simpson (1941), and Christiansen and Harris (2009). However, authors agree in that \textit{P. atrox} inhabited open and dry environments rather than forested areas, in contrast to living \textit{P. onca} (Sunquist and Sunquist, 2002). In fact, the highly cursorial morphology of \textit{Panthera atrox} is probably convergent with that of \textit{P. leo}, which is adapted to the Africa savannah. \textit{Panthera atrox} effectively occupied open plains habitats exclusively, and probably developed its distinctive morphology as a result (Barnett et al., 2006, 2009; Martin et al., 1977; Wang and Martin, 1993; Wheeler and Jefferson, 2009). This is in agreement with the habitats were “F. o. mesembrina” was found, which consisted in open and very dry environments of southern Chilean and Argentinean Patagonia, very different from the habitats occupied by the living jaguar \textit{P. onca} (Carman, 1984; Diaz, 2010).

Probably, one of the most interesting findings regarding the behavior of “F. o. mesembrina” was reported by Borrero (1997). He described a fossilerous site consisted on a deep cave and burrow with large accumulation of very large mammals including \textit{Mylodon}, \textit{Lama}, \textit{Hippidion}, \textit{Hippocamelus}, and others, with abundant tooth marks and broken bones. These authors analyzed in detail this discovery, and conclude that it belonged to a large felid burrow,
and was referred to “F. o. mesembrina” based on the size of tooth marks on preyed bones, and other taphonomical features of the site. It is worth to mention that in such sites the forelimbs of preys are much more frequent than other elements, which is in agreement with the model of consumption of living felids, which more commonly transport the hindlimbs to their burrows (Blumenschine, 1986; Blumenschine and Marean, 1993). Later, Martin (2008, 2013) corroborated such referral and added other localities bearing bone accumulation sites in burrows pertaining to “F. o. mesembrina”. The capacity of transport and accumulate carcass of preys is relatively uncommon in felids, and is present in a couple of species. Among pantherines it is present in lion and leopard (Egeland, 2007). As, for example, the leopard Panthera pardus employs caves as places of feeding and breeding, preferring dark enclosures for such object (Brain, 1981; De Ruiter and Berger, 2000; Sauquè et al., 2014). A similar behavior was also reported in extinct taxa, such as Homotherium (Dominguez-Rodrigo et al., 2007; Marean and Ehrardt, 1995). In this regard, it has been reported that the jaguars only occasionally transport their prey to rocky burrows (Lewis, 1997; Martin, 2013) but this is uncommon nowadays. In any case, they do not accumulate remains of different preys in the same cave, contrasting with the giant Patagonian pantherine (Tonni et al., 2003).

Specimens of P. atrox from the latest Pleistocene have often been interpreted as having formed social groups (Turner and Antón, 1997; Yamaguchi et al., 2004). However, Wheeler and Jefferson indicate the absence of evidence arguing in favor or against social behavior of P. atrox. In this regard, the holotype skull of “F. o. mesembrina” shed some light in this respect. In jaguar skulls, both living and fossil, is common to find the presence of a shallow irregular pit on the lateral surface of the maxilla-nasal suture immediately posterior to the ascending process of the premaxilla; this represents a puncture by the canine made by other jaguar, healed during life (Simpson, 1941). As this author pointed out, all wild-collected specimens with such punctures were males, and no females with such scars were found everywhere. The presence of a puncture on the lateral surface of the skull in “F. o. mesembrina” described by Cabrera (1934) suggests that the specimen was a male. Furthermore, it also suggests that some kind of social behavior may have occurred among Panthera atrox individuals.

In sum, evidence at hand indicates that the behavior of Panthera atrox from Patagonia was different from P. onca and was more similar in this aspect to Old World P. leo and P. leopards.

Palaeobiogeography. The phylogenetic affinities among pantherines, and specifically of P. atrox are in state.
of flux. The most comprehensive morphological analyses including living and extant taxa are those of Christiansen (2008a) and King and Wallace (2014), and the molecular analysis of P. onca and P. atrox as successive stems towards the lion-cave lion-leopard clade. On the other hand, in King and Wallace (2014) phylogeny the position of both P. atrox and P. onca was not fully resolved. However, they propose a basal position for P. onca and a more derived position, nested within the lion lineage, for P. atrox. Barnett et al. (2009) also indicate that P. atrox was well-nested within the lion clade, whereas P. onca was considered as basal within the genus.

Fossil evidence of the onca-leo lineage began in the Villarrancho (1.9 Myr) in Europe (Hemmer et al., 2001), and the first presence of jaguar lineage in the Americas was reported as early Irvingtonian (Kurtén and Anderson, 1980) which is 1.5 Myr. Based on this fossil record and phylogenetic hypotheses, Christiansen and Harris (2009; see also Yamaguchi et al., 2004) propose that the Panthera lineage entered in North America by the early Pleistocene and later evolved in the modern jaguar, including extinct subspecies. Subsequently this lineage entered South America probably by late Pleistocene times (Yamaguchi et al., 2004). Christiansen and Harris (2009) further indicate that this palaeeobiogeographical scenario is congruent with the geographical distribution of the modern jaguar, and its presence in the Rancho La Brea deposits (Merriam and Stock, 1932), a hypothesis that was followed by most recent authors.

However, most authorities do not discuss in detail the fossil record of the Panthera lineage in South America. At first, it is worthy to mention that remains assignable to Panthera onca are present in South America at least since the early-middle Pleistocene “Ensenadan” times (Ameghino, 1904; Berman, 1994; Cruz et al., 2012; Rusconi, 1929, 1949). In fact, Rusconi (1929) reported the presence of Felis proplatensis (= Panthera onca, sensu Cabrera, 1934) based on a single metatarsal III. This element was large-sized but relatively gracile, indicating, based on Rusconi’s data, that it certainly belongs to a Panthera species, the size of P. onca. Later, Rusconi (1949) confirmed the presence of Panthera onca described by him under the name Panthera proplatensis for the “Ensenadan” age based on a nearly complete mandible of the size of a living jaguar. This suggests that the Panthera lineage has a longer history in South America, and blurs palaeeobiogeographical hypotheses proposing not only its arrival time from North America, but also the place of origin of its lineage. Furthermore, if the phylogenetic hypothesis of Christiansen (2008b) is followed, the presence of the stem-lions P. onca and P. atrox in America may suggest that the lion lineage may have its origin in America rather than in the Old World as previously advocated (see Yamaguchi et al., 2004). However, evidence is still sparse, and more detailed studies and the finding of new material is needed to accept or refute palaeeobiogeographical hypotheses regarding the origin and radiation of Panthera lineage in the Americas.

Regarding P. atrox, its confirmed presence south to the continental ice sheet in North America is first documented from the Rancholabrean (Kurtén and Anderson, 1980). In this regard, purported Late Pleistocene Peruvian P. atrox were sustained by Kurtén and Anderson (1980; but see Seymour, 1983), and were considered as a late arrival of the species to South America by Yamaguchi et al. (2004). Further, Shockey et al. (2009) mention remains of a very large feld of the Panthera genus from the late Pleistocene at Jatun locality, Peru that may prove to belong to P. atrox. It is worthy to mention that based on the fossil record, the species P. atrox appears to be restricted to the Andean-Patagonian region, whereas remains of P. onca are usually found in eastern side of the Andes (see exceptions in Hoffstetter, 1949). This pattern of two dispersal corridors along South America was also recognized for herbivorous mammals, including proboscidians and equids (Gallo et al., 2013; Prado et al., 2005).

The presence of at least two pantherine lineages (i.e. P. onca and P. atrox) in the Pleistocene of South America indicates that the clade has a long and complex history in the New World, and that the history of the lineage in this landmass is still far from being well understood.

Acknowledgments

Special and deep thanks to L. Pomi, whom suggested and commented on the possible occurrence of P. atrox in South America. We also thank Agustín Agnolin for his help during the acquisition of bibliography. We pecially thank S. Bogan (Fundación de Historia Natural “Félix de Azara”), D. Flores, S. Lucero, and G. Cassini (MACN) for their help during the revision of the collections under their care. We thank Doris Nagel and two anonymous reviewers, as well as the Editor Lars van den Hoek Ostende for their comments on the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.cprv.2017.06.009.

References

etnoarchaeological and experimental contributions to the interpretation of faunal remains. Center for Archaeological Investigations, University of Southern Illinois, Carbondale, pp. 273–300.

Christiansen, P., 2008b. Phylogeny of the great cats (Felidae: Pantherinae), and the influence of fossil taxa and missing characters. Cladistics 24, 1–16.

Diedrich, C.G., Rathgeber, T., 2012. Late Pleistocene steppe lion Panthera leo spelaea (Goldfuss 1810) skeleton remains of the Upper Rhine Valley (SW Germany) and contributions to their sexual dimorphism, taphonomy and habitat. J. Bioc. 24, 1–29.

Roth, S., 1899. Descripción de los restos encontrados en la caverna de Última Esperanza. Rev. Mus. La Plata 9, 381–388.

Rusconi, C., 1929. Enumeración sistemática de las especies de mamíferos fósiles procedentes del piso Ensenadense halladas por el autor. Impr. M.L. Rañó, Buenos Aires (15 p.).

Seymour, K.L., (M.S. thesis) 1983. The Felinae (Mammalia: Felidae) from the Late Pleistocene tar seeps at Talara, Peru with a critical examination of the fossil and recent felines of North and South America. University of Toronto, Canada (238 p.).

