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Abstract

Correspondence analysis (CA) is frequently used in the interpretation of palaeontological data, but little is known about the
minimum requirements for a result to be valid. Far from being a fundamental mathematical study of CA, this paper aims to present
a tool, which may serve to evaluate results obtained in (palacontological) praxis. We created matrices of random data, grouped by
matrix size and varying percentages of zero cells. Each matrix was submitted to CA. Per matrix group the minimum, mean and
maximum percentages of total inertia were calculated for the first four axes. We compared these results with several real cases in
vertebrate paleontology. Valid conclusions based on CA can only be drawn on percentages that are considerably higher than the
axis percentages obtained from random matrices. To cite this article: M. Freudenthal et al., C. R. Palevol 8 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

L’application de I’analyse des correspondances en paléontologie. Les données paléontologiques sont fréquemment interprétées
par analyse des correspondances (CA), mais on connait peu de choses a propos des expériences minimales que nécessite cette analyse
pour en tirer des conclusions valables. Le but de ce travail n’est pas une étude mathématique fondamentale de CA, mais la présentation
d’un instrument qui puisse servir pour évaluer les résultats obtenus dans la pratique paléontologique. Nous avons créé des matrices
de contingence avec des valeurs aléatoires, groupées par dimensions et par pourcentages variables de zéro. Chaque matrice a été
soumise & CA. Pour chaque groupe de matrices, nous avons calculé le minimum, la moyenne et le maximum des pourcentages
d’inertie totale pour les quatre premiers axes. Ces résultats sont comparés avec plusieurs cas réels en paléontologie de vertébrés.
Les conclusions basées sur CA ne sont valables que quand les pourcentages des premiers axes sont considérablement plus élevés
que les pourcentages d’axe tirés des données aléatoires. Pour citer cet article : M. Freudenthal et al., C. R. Palevol 8 (2009).
© 2008 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

- . Multivariate Data Analysis techniques are used to
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graphic form to facilitate their interpretation. They may
be subdivided into two groups: classification meth-
ods and factorial methods. Correspondence analysis
(CA) belongs to the latter group and searches to rep-
resent the original data in a space of fewer dimensions
through calculations that essentially belong to linear
algebra. It produces graphic representations, where the
objects to be described are transformed into points
on an axis or a plane, offering synthetic representa-
tions of wide groups of numeric values. Simple CA
(just like other factorial reduction methods) substi-
tutes a matrix by another one with fewer dimensions.
One of its most interesting approaches is based on
the general theory of Singular Value decomposition
(SVD) of a matrix, which is the framework that many
multivariant techniques have in common. From a geo-
metric point of view it means calculating the subspace
with less dimensions that best fits the data of the
original matrix. This geometric adjustment uses an
exact algebraic formula, which calculates the reduced
matrix that has minimum distance to the original
one.

CA has been developed by Benzécri since 1964 and
published in French in 1972 [1] and later in English [2].
Since the 1980s, and evidently closely related with the
development of informatics, the abstract mathematical
approach by the Benzécri school has been transformed
into matrix notation, e.g. by Greenacre [6], suitable
for its use in computer programs. One might say that
the French school emphasized the probabilistic model,
whereas in the Anglo-Saxon school the exploratory
model prevailed.

Greenacre [7] stated: “An important aspect of CA
which distinguishes it from more conventional statistical
methods is that it is not a confirmatory technique, trying
to prove a hypothesis, but rather an exploratory tech-
nique, trying to reveal the data content”. This is primarily
achieved by graphical representations of the distributions
on the first axes, which allow an easy access to the data
and permit to formulate hypotheses. Such hypotheses
can then be tested formally by conventional statistical
methods.

Apart from the graphical representations, fundamen-
tal data in CA are the total inertia of the data matrix and
the percentages of the total inertia covered by each of the
axes. The higher the values obtained on the first axes, the
easier it will be to interpret the results; and when these
values are low, it is very difficult, if not impossible, to
formulate a good hypothesis.

CA is widely used in fields as different as sociology,
economy, linguistics, ecology, medicine and psychol-
ogy and it is being used ever more frequently in the

analysis of palaeontological data. When we tried to
apply it to our own data tables and compare it with
classical palaeontological methods, we realized that lit-
tle is known about the minimum percentages required
for a result to be useful. CA always produces a result,
sometimes better, sometimes worse, but there seems to
be no instrument to decide whether a result should be
accepted or rejected.

Far from being a fundamental mathematical study of
CA, this article aims to present a tool that may serve
to evaluate results obtained in (palaeontological) praxis.
We achieved this by creating a large number of data
tables with random data and submitting these to the pro-
gram PAST [8]. These tables are grouped according to:

e table size, the number of cells in the table;

e percentage of zero cells, the sum of “absence” and
“missing data” cells;

e data range, the range between the smallest and the
largest value in the table.

For each group of random tables the mean and the
range of the values of the first four axes of CA were
calculated, and it became clear that the results of CA
are strongly influenced by the above mentioned group
criteria. The values obtained are given in Tables 1 and 2,
which may be used to evaluate the results of real cases.
When areal case does not score considerably higher than
the corresponding random table, one should conclude
that CA does not give a useful result. Of course, this
does not mean that the subsequent analysis of the data
leads to incorrect results; it only means such an analysis
is not supported by CA.

2. Methods

We created 20 files with random data, imitating
taxon by locality matrices, through a program written
in Visual Basic. The random numbers were created by
means of the random generator of Visual Basic, using
the decimal fractions only and placing one digit in
each cell. In the resulting matrices of 20 rows by 10
columns the numbers 0 to 9 occur in more or less equal
frequencies, and no structure whatsoever is expected to
exist in such a matrix. These 20 matrices are represented
in Table 1 on the line “standard”.

Inside each matrix the contributions of the individ-
ual cells to the matrix sum vary only moderately, so we
created a derivate of each matrix by multiplying certain
values by 10, in order to get a distribution of several
high values and many low values per row and column,
a situation that is probably more similar to a real taxon
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Table 1

Percentages for the first axis, the sum of the first two axes, the sum of the first four axes, and the inertia of correspondence analysis over 330 random

matrices.
Tableau 1

Pourcentages pour le premier axe, la somme des deux premiers axes, la somme des quatre premiers axes et 1’inertie de 1’analyse des correspondances

sur 330 matrices aléatoires.

1 axis 2 axes 4 axes Sum eigenvalues

n Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.
20 x 10
Standard 20 21.19 25.29 30.73 40.36 45.23 52.69 68.75 73.70 79.13 0.30 0.37 0.44
Adapt 20 19.03 22.72 27.60 36.08 42.03 48.11 64.23 71.56 79.96 1.02 1.17 1.45
Zero 20 20.94 25.56 28.90 41.09 45.17 48.65 68.62 72.62 79.41 0.73 0.83 0.98
Pattern 20 21.77 27.52 34.71 40.15 49.07 57.39 68.19 76.25 81.94 0.56 0.83 1.04
30 x 15
Standard 20 15.40 17.61 20.87 29.08 32.38 37.81 52.09 55.29 60.15 0.33 0.37 0.41
Adapt 20 14.00 16.37 18.37 26.49 30.18 33.17 48.50 52.90 56.60 0.38 1.29 1.52
Zero 20 14.16 16.96 20.70 27.01 31.46 35.95 50.27 54.30 59.85 0.81 0.85 0.93
Pattern 20 17.23 22.40 27.08 31.54 39.99 44.63 55.79 64.14 69.80 0.56 0.86 0.99
40 x 30
Standard 20 9.46 10.83 12.43 18.02 20.16 21.76 33.14 36.12 37.98 0.34 0.37 0.41
Adapt 20 8.93 10.26 11.71 17.55 19.41 21.62 32.76 35.03 37.95 0.41 1.39 1.54
Zero 20 9.46 10.52 11.36 18.24 19.97 21.37 33.57 36.02 38.36 0.84 0.87 0.89
Pattern 20 11.37 17.28 22.11 22.35 31.83 38.94 40.07 51.21 57.88 0.56 0.84 0.98
98 x 30
Standard 20 7.14 7.77 8.62 13.85 14.87 16.21 26.47 27.49 28.86 0.36 0.38 0.40
Adapt 20 6.83 7.27 7.92 13.17 14.05 14.96 25.02 26.29 27.23 1.42 1.48 1.55
Zero 20 7.04 7.55 8.26 13.94 14.53 15.59 26.17 27.10 28.56 0.87 0.89 0.91
Pattern 20 9.06 16.42 18.87 17.80 31.09 34.39 33.09 49.18 52.31 0.61 0.90 0.96
60 x 50
Standard 10 6.51 6.82 7.20 12.67 13.06 13.51 23.62 24.38 25.26 0.36 0.38 0.39
14 x 14
Standard 10 21.08 25.21 29.88 40.42 44,70 52.83 66.98 71.03 77.63 0.27 0.34 0.41

by locality array. These 20 matrices are represented in
Table 1 on the line “adapt”.

A second set of derivate matrices was created by sub-
stituting randomly the contents of about 35% of the cells
by 0. These 20 matrices are represented in Table 1 on
the line “zero”. The line “pattern” indicates matrices
with added zeros, created by an algorithm that intro-
duces some kind of a pattern in the data. For details see
the chapter “The influence of zeros in a matrix”.

Table 2

Each matrix was submitted to CA using PAST version
1.71 [8]. Per matrix group (standard, adapted, zero and
pattern) the minimum, mean and maximum percentages
were calculated for the first axis, the sum of the first two
axes, and the sum of the first four axes (Table 1).

Then, the entire process was repeated for matrices
of 30 rows by 15 columns, matrices of 40 rows by 30
columns and matrices of 98 rows by 30 columns, result-
ing in a total of 320 matrices.

Percentages for the first axis, the sum of the first two axes, and the sum of the first four axes of correspondence analysis over 20 random 35 x 30
matrices with 70% zeros (A), and idem with multiplication of certain values (B).

Tableau 2

Pourcentages pour le premier axe, la somme des deux premiers axes et la somme des quatre premiers axes de 1’analyse des correspondances sur 20
matrices aléatoires 35 x 30 avec 70 % de zéros (A), et idem avec multiplication de certaines valeurs (B).

1 axis 2 axes 4 axes Sum eigenvalues

Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.
A 13.90 15.90 17.75 25.40 28.75 31.23 43.63 47.89 50.78 2.77 3.10 345
B 12.01 14.11 17.55 22.85 25.67 29.84 41.66 44.17 47.49 3.58 3.92 4.56
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The results were first calculated over five and 10
matrices in each group; between the results for five and
10 matrices there were some important differences; the
results for 10 and 20 matrices are very similar, so we may
assume a sample of 20 matrices is sufficiently reliable. In
a few cases we analyzed up to 60 equally sized matrices
and this confirmed that 20 is a sufficiently large number.

This procedure allows an analysis of the correlation
between matrix size and axis percentages in CA. How-
ever, another factor in CA is the inertia, or sum of the
eigenvalues. In our random files the total inertia rarely
exceeds 1.0, which is considered to be a low value,
caused by the fact that the majority of the values range
between 0 and 9, and higher values are scarce in the
adapted matrices, and absent in the other two groups.

Therefore, we created new random matrices, in
which we randomly multiplied certain cells by stepwise
increasing factors, incrementing the total inertia to val-
ues over 6.0. We analyzed the correlation of increasing
inertia with decreasing values of the first axis of CA.

Finally, we analyzed a set of matrices with 70% zeros,
as frequently found in palaeontological practice.

3. Analysis of the correlation matrix size/axis
values

Since the matrices contain random data that, in princi-
ple, present no correspondence (except maybe for some
fortuitous case), one has to admit that conclusions based
on real cases with similar axis values are invalid. Valid
conclusions based on the axis percentages of CA can only
be drawn on values that are considerably larger than the
results obtained from the random matrices.

The size of the array is strongly related with the
percentages obtained on the first axes (Fig. 1). The per-
centages of the first four axes in a large matrix are
considerably smaller than in a 20 x 10 matrix. In real
cases, the threshold from where results may be consid-
ered to be useful should be placed much higher in small
arrays. Apart from that, one should consider whether
—independent of the array size— results of less than
about 70% for the first four axes are useful.

The values obtained for the “adapted” matrices
are constantly lower than those for the correspond-
ing “standard” matrices. Assuming that the method
of adaptation used did not introduce structure into
the matrix (and there is no reason to believe it did),
one must conclude that a relatively small number of
cells with much higher values than the majority has
a considerable influence on the results obtained. Ter
Braak [3] suggested logarithmic transformation for
such matrices. We tried this, and in some cases the

Cells
3000

2000 -

1000 - cl

500
400+

300+

200+

100 T 7 T 7 T 7 7 T

Fig. 1. Correlation between matrix size (number of cells) and percent-
age of the eigenvalues for the first axis, the sum of the first two axes,
and the sum of the first four axes. Squares represent the means for 20
random matrices, circles represent the maximum values found. C, g,
k, m, and p are the positions of one, two and four axes in real matrices.
Fig. 1. Corrélation entre la taille de la matrice (nombre de cellules) et
le pourcentage de valeurs propres pour le premier axe, la somme des
deux premiers axes et la somme des quatre premiers axes. Les car-
rés représentent les moyennes pour 20 matrices aléatoires, les cercles
représentent les valeurs maximales trouvées. C, g, k, m, et p sont les
positions de un, deux, trois et quatre axes dans les matrices réelles.

result for the first axis in the log-transformed matri-
ces was lower than in the original matrix, but in quite
some cases considerably higher values were found.
Apparently, logarithmic transformation produces unpre-
dictable results.

Plotting the first two axes of CA may give diffuse dis-
tributions, or there are some groups and isolated points,
for both the standard and the adapted matrices. In the
largest matrices no groups or outlying points can be
recognized.

On Fig. 1 the mean values and the maxima of the first
four axes of the standard matrices are plotted against the
number of cells. The correlation between the number
of cells and the percentages of the axes is evident. The
letters ¢, g, k, m and p on Fig. 1 represent the position of
real data taken from the literature that will be discussed
afterwards.

For the decision whether the results of CA for a real
matrix are meaningful, we have to take as a threshold
the maximum value found in our random data, for the
corresponding matrix size, plus a certain margin. In prac-
tice this means that the results of a medium-sized matrix
(500-1000 cells) should be considered insufficient when
the value of the first axis is below 25-30%, or the sum of
the first two axes is below 35-45%. In large matrices the
threshold should be chosen at 20% (one axis) and 30%
(two axes). For small matrices the thresholds are around
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40 and 60%, and these percentages must be considered
conservative estimates.

An additional problem with big matrices with low axis
values is the number of axes to be interpreted. Interpre-
tation of more than four axes is practically impossible.
So, probably no valid conclusions can be drawn when
the first four axes cover less than 70% of the inertia,
independent of the size of the matrix.

On the other hand, this does not mean that there is
no correlation in a matrix with low axis values. It only
means that in such cases no valid conclusions can be
based on CA, and visual inspection of the matrix may be
more fruitful.

4. The shape of the matrix

We took the number of cells as a measure for the
matrix size, but the relation between the number of
columns and rows has some influence too: as a general
rule square tables give lower axis values than oblong
tables; e.g. in ten 50 x 60 standard matrices the value
of the first four axes are constantly lower than in the
98 x 30 tables, which have practically the same number
of cells. In the same way the values for 14 x 14 tables are
slightly lower than for 20 x 10 tables (Table 1). When
one decreases the value of one of the dimensions of the
table, maintaining more or less the same number of cells,
the values of the first four axes of CA will increase until
—of course— reaching 100% in matrices with only five
columns or five rows. In such matrices one should ana-
lyze only one or two axes, and these should give very
high values in order to be meaningful. In small matri-
ces at least one of the dimensions is necessarily small
and that is one of the reasons why they show higher axis
values than large matrices.

5. Analysis of the correlation inertia/axis value

When discussing the results with Dr Casanovas-Vilar
(Sabadell) the question arose whether the total inertia
could influence the results. In our standard and zero
matrices the values of the cells vary between 0 and 9;
in real matrices the differences between cells are usually
much greater, resulting in a greater inertia. We there-
fore refined the method of multiplication applied to the
adapted matrices, and found that there is some correla-
tion between total inertia and the percentages found for
the first axis, depending on the size of the matrix (Fig. 2).

For each of the classes of 1200, 450 and 200 cells
we created matrices in which we increased the iner-
tia through six steps of multiplications of cell values
by increasing factors, returning to the original matrix

Sum eigenvalues X random 1200 cells
79 O random 450 cells

x + random 200 cells
X 5] ¢ Casanovas 1015 cells
6 g Garcia 544 cells
X Oo k Koufos 308 cells
o m Minwer 270 cells
54 ® p Popov 238 cells
X (¢}
x o]
4 X
(e}
%o
37 X
Xx
2
KX
1 -
% k
0 T T T y y T T T )
5 10 15 20 25 30 35 40 45

1st axis

Fig. 2. Correlation between the sum of the eigenvalues (inertia) and
the percentage found for the first axis of CA for various matrix sizes.
Fig. 2. Corrélation entre la somme des valeurs propres (inertie) et le
pourcentage trouvé pour le premier axe de CA pour des tailles variées
de matrices.

after each step. We did this in two different ways. In the
first algorithm we multiplied the same cells in these six
steps. This does not change the structure of the matrix,
it merely stretches the range of the values. In the second
algorithm, in each step we randomly chose the cells to
be multiplied, creating six matrices with different struc-
tures. There were no important differences in the results
of these two methods.

For the resulting 20 x 10 matrices the variability is
very great and the points are distributed in an irregular
way, but higher values on the first axes seem to be cor-
related with lower eigenvalues, though in some matrices
the opposite is the case. On Fig. 2 the consecutive mul-
tiplication steps for each 20 x 10 matrix are connected,
so one can see that in several cases the first step causes
a strong increase of the percentage of the first axis; after
that there is a negative correlation.

For large matrices there is practically no correlation,
the points plot on an almost vertical line.

6. The influence of zeros in a matrix

Creating random matrices with a high percentage of
zeros is not easy, and several algorithms were rejected
because they apparently introduced rhythmic sequences
in the matrix, often recognized by the fact that the first
two axes gave practically the same values. When we ana-
lyzed graphic representations of such matrices (coloring
the background of zero cells [Fig. 3]), we observed in
quite some cases diagonal or V-shaped patterns of zeros.
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Fig. 3. Diagonal distribution of zero cells. Light grey: cells with values
from 1 to 9; dark grey: cells with 0.

Fig. 3. Distribution diagonale des cellules zéro. Gris clair: cellules
avec valeurs de 1 2 9; gris foncé : cellules zéro.

These matrices gave very high percentages for the first
axes, in comparison with the standard matrices they were
derived from (see line “pattern” in Table 1), but in fact
they are no longer random matrices. Before executing
CA on a real matrix one should analyze it, to make sure
that there is no meaningless accidental pattern that would
influence the results of CA.

Ter Braak ([3], table 5.3) noted the influence of diag-
onal structures on CA. A hidden diagonal structure may
become visible by reordering the rows (and maybe that is
what CA does, because randomly reordering the rows has
no influence on the axis values); however, in a real matrix
where the rows are placed in stratigraphic order, such
reordering would be senseless because it approaches
information that by nature is separated.

The rejected algorithm revealed a second problem:
the lines “pattern” in Table 1 refer to matrices with
35% zeros that form a pattern. The values for the CA
axes are much higher than in the matrices they were
derived from. We repeated the same procedure substi-
tuting with “1” and “2”. In these cases the axis values do
not deviate significantly from those of the standard matri-
ces. Apparently a pattern formed by zeros has a much
greater influence on CA results than a pattern formed by
a nonzero value.

The matrices produced by the correct algorithm, not
introducing a pattern, are represented on the lines “zero”
in Table 1. They are not significantly different from the
matrices they were derived from.

The matrices of Casanovas-Vilar and Agusti [4],
Garcia-Alix et al. [5] and Minwer-Barakat [10] have
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about 70% of zeros. Line A in Table 2 lists the val-
ues obtained for 20 random 35 x 30 matrices with 70%
zeros. Their inertia varies between 2.8 and 3.5, mean
3.1. Apparently the high proportion of zeros produces a
very great variability, and some very high values for the
first axis. We repeated this for matrices, where randomly
chosen cells were multiplied to obtain greater total dif-
ferences between cells. Their inertia varies between 3.6
and 4.6, mean 3.9, but the maxima obtained for the axes
do not differ substantially from the previous case. The
results are given in Table 2, line B.

7. Absence/presence matrices

Sometimes CA is applied to absence/presence matri-
ces that contain only zeros and ones. We transformed
five random matrices of each size group to such
absence/presence matrices, and found nearly always an
increase of the value of the first axis of CA. In the 20 x 10
matrices the greatest increase found was from 24.0 to
41.3%, and since we tried only five matrices greater
increases are certainly possible. In the 30 x 15 arrays the
increase was about 5%, with one exception: from 17.9
to 27.2%. In the larger matrices only slight increases
were found. In the 30 x 35 matrices with 70% zeros
the maximum increase found was from 14.0 to 21.5%.
Moreover, whereas the original matrices normally give
a diffuse plot, these random absence/presence matrices
tend to show clear groupings in the plot of the first two
axes.

When applying CA to absence/presence matrices, one
must consider a higher threshold to decide whether the
results are meaningful.

8. Comparison of CA and Principal Components
Analysis (PCA)

Apart from CA we submitted our 20 x 10 and 98 x 30
matrices to PCA. The results, represented in Table 3, are
quite similar to the results of CA. This may mean that
the same considerations presented here for CA apply to
PCA too.

9. Comparison with real data matrices

We compared the results of our random data with
real matrices taken from Casanovas-Vilar and Agusti [4],
Garcia-Alix et al. [5], Koufos [9], Minwer-Barakat [10]
and Popov [11].

On Fig. 1, cl, c2 and c4 represent the first axis, the
sum of the first two axes and the sum of the first four axes
of the Casanovas matrix (1015 cells). C1 is very close to
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Table 3
Results of PCA for 20 x 10 and 98 x 30 matrices over the same data as in Table 1.
Tableau 3
Résultats des PCA pour 20 x 10 et 98 x 30 matrices sur les mémes données que dans le Tableau 1.
20 x 10 1 axis 2 axes 4 axes Total inertia

n Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.
Standard 20 19.33 23.02 27.90 37.50 42.06 49.13 65.51 70.26 75.46 75.84 82.32 92.63
Adapt 20 21.34 25.90 33.02 37.32 45.59 54.89 63.55 73.15 79.58 1358.20 1943.44 2636.69
Zero 20 21.27 24.52 29.50 38.67 42.56 47.79 67.40 70.37 76.20 90.27 100.91 113.73
Pattern 20 20.09 27.41 33.59 38.79 48.35 56.16 65.54 74.24 81.65 88.03 100.61 115.20
98 x 30
Standard 20 6.86 7.50 8.45 13.47 14.38 15.68 25.69 26.68 28.28 231.59 241.41 251.54
Adapt 20 6.95 7.76 8.49 13.70 14.85 16.04 26.33 27.55 29.57 5405.45 5890.76 6219.45
Zero 20 6.90 7.46 8.20 13.61 14.36 15.56 25.70 26.70 28.13 286.26 298.27 305.92
Pattern 20 9.16 16.59 18.97 17.75 31.15 34.44 32.84 49.18 52.49 281.19 297.50 311.27

the range of random matrices, c2 and c4 are outside the
range of random matrices.

The c on Fig. 2 also represents the Casanovas matrix.
The value of the first axis: 18.1, with a sum of the eigen-
values of 4.48 (pers. comm. Dr Casanovas-Vilar), scores
better than our random matrices. By interpolation one
may estimate the maximum of the first axis value for a
1000 cell random matrix to be between 11 and 12 (in
a few trials we found a maximum of 11.0). It is diffi-
cult to say whether the difference between 12 and 18 is
large enough to conclude that the Casanovas matrix is
outside the zone of random matrices. On the other hand,
the sum of the first four axes: 57.72, is so low that the
interpretation may easily be incorrect.

The Casanovas matrix contains about 70% zeros,
so we created 20 random matrices of the same size
(30 x 35) with 70% zeros and 20 matrices with 70%
zeros and multiplication of values (Table 2), using the
algorithm that does not introduce a pattern. In both cases
the sum of the eigenvalues is comparable to the value
found by Casanovas-Vilar and Agusti [4], and the max-
imum values obtained for the axes come so close to
the values in the Casanovas matrix that one must con-
clude that the latter are not significantly different from a
random result.

On Fig. 1, g1, g2 and g4 represent the axis data of the
Garcia matrix [5]. The values obtained are well above the
limits calculated from the random files, but we could not
make a useful interpretation of these results, and think
that in this case they are fortuitous. The same goes for
ml, m2 and m4 of the Minwer matrix [10]. On Fig. 2 both
these matrices fall outside the range of random matrices
in view of the number of cells they contain.

On Fig. 1, k1, k2 and k4 are the data for the Koufos
matrix [9]. The values are very high, and their interpre-

tation by Koufos appears to have a sound basis. This
is confirmed on Fig. 2, in spite of the low value of the
inertia.

The Popov matrix (p on Fig. 1) is a 34 x 7 absence/
presence matrix (238 cells). On Fig. 1 and Fig. 2 it falls
within the range of the standard random matrices. As
said before, we found a value of 41% for the first axis
of CA in a 20 x 10 absence/presence matrix, which is
considerably larger than the 30.1% found by Popov [11].
The conclusions of Popov may be perfectly correct, but
they cannot be inferred from the results of CA.

10. Conclusions

Conclusions obtained from CA cannot be evaluated
correctly when the total inertia and the matrix size are not
given. In publications of the results of CA this informa-
tion should be available. Another indispensable datum
is the percentage of zero cells.

CA is doubtlessly a useful technique. But, the high
values obtained from random matrices demonstrate that
one should be careful when using CA for analyzing real
data matrices; the obtained values should be well above
the threshold values presented here. This is especially
true when these matrices are not very big, or when
they contain a high percentage of zeros. Simple visual
inspection of a data matrix is then probably more reliable.

For the decision whether the numerical results of CA
for a real matrix are meaningful, we have to consider a
threshold based on the results from the random matrices.
For small matrices (up to 500 cells) the first axis should
represent at least 40% of the inertia, and the first two axes
should sum 60%. In a medium-sized matrix (500-1000
cells) these limits are 30 and 40%, respectively. In large
matrices the thresholds should be chosen at 20% (one
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axis) and 30% (two axes). In such cases, however, serious
problems arise, because one has to interpret too many
axes, and, probably, one should refrain from using CA
when the sum of the first four axes is less then 70%.
For matrices with many zeros and for absence/presence
matrices the thresholds are higher than stated before.

It is necessary to check whether a matrix contains an
accidental hidden diagonal structure, which may result
in a high but meaningless value for the first axis.
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