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Abstract

Locomotion is a behaviour resulting from the interaction of the nervous and musculoskeletal systems and the environment.
However, the musculoskeletal systems of some terrestrial mammals present an intrinsic ability to realize a dynamic stable locomo-
tion. Current anthropomorphic passive walkers demonstrate that a pure mechanical system with legs and arms is able to walk down
an inclined plane. Numerical simulations confirm that self-stabilization of the mechanics is acting in running too. The necessity to
ensure the dynamic stability of a cyclic locomotion set physical constraints to the musculo-skeletal system. A description of the
locomotor apparatus with neuromechanical variables like the stiffness – accessible to the experimentation – enables for maintain-
ing the number of degrees of freedom of biomechanical models as low as possible. The maximization of the robustness of the
mechanical self-stabilization of the models with regard to the body proportions represents for future simulations an optimization
criterion that should bring a new light into the comprehension of the body proportions. To cite this article: R. Hackert et al., C. R.
Palevol 5 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’auto-stabilisation mécanique, une hypothèse de travail pour l’étude de l’évolution des proportions corporelles
chez les mammifères terrestres. La locomotion résulte de l’interaction du système nerveux, du système ostéomusculaire et de
l’environnement. Cependant, le système musculo-squelettique de certains mammifères terrestres apparaît avoir acquis une capacité
intrinsèque à se mouvoir d’une façon dynamiquement stable. Les robots marcheurs passifs actuels nous montrent qu’une structure
mécanique avec des jambes et des bras est capable de descendre le long d’un plan incliné sans source de contrôle supplémentaire.
Les simulations numériques semblent, de plus, montrer que des phénomènes d’autostabilisation de la mécanique sont à l’œuvre
pendant la course également. La nécessité d’assurer une locomotion cyclique dynamiquement stable est porteuse, elle aussi, de
contraintes physiques à définir, à découvrir. L’étude des relations entre stabilité dynamique et morphologie suppose une modéli-
sation du système étudié et l’utilisation de l’outil simulation numérique. Une description du système avec des variables neuromé-
caniques telle la raideur, accessible à l’expérimentation, permet de contenir le nombre de degrés de liberté du modèle. La maxi-
misation de la robustesse de l’autostabilisation mécanique, c’est-à-dire la maximisation de l’intensité de la perturbation que le
rt@animals-in-motion.com (R. Hackert).
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système en mouvement est capable de supporter sans tomber, fournit pour les futures simulations un critère d’optimisation capable
d’éclairer d’une façon nouvelle notre compréhension des proportions du squelette. Pour citer cet article : R. Hackert et al., C. R.
Palevol 5 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

By the transition from the sprawled reptilian leg con-
figuration to the parasagittal mammalian limb, one ad-
ditional segment was added in the fore and hindlimbs
(scapula and elongation of the tarsus). Thus, scapula
and femur, humerus and tibia, ulna and tarsus became
functional correspondents in mammals [42,46]. During
in-phase gaits (bound, half-bound, gallop), extensive
flexions and extensions occur in the posterior thoracic
and the lumbar regions of the spine, especially in mam-
mals [28]. These back movements act to some extent as
an additional proximal segment modulating the position
of the pelvis up to 40 degree [51]. Mammalian posture
seems to follow the ‘crouched posture and high ful-
crum’ [20], i.e. scapular pivot in fore and hip joint in
hindlimbs are held at the same level. But intralimb pro-
portions and relations between the functional corre-
sponding segments within the kinematical chains are
still poorly understood if well described by allometry
relations within a family [44].

The locomotor apparatus evolved under the selective
pressure of structural, (eco-) physiological and mechan-
ical constraints. Among them, efficiency in energy con-
sumption is certainly one of the most important con-
straints and is expressed in two dual ways to handle
with energy during (loco-)motion.

First: reduction of muscular work as much as possi-
ble. Kustnezov [42] interpreted the incorporation of the
third segment as an energy-saving adaptation that en-
ables the reduction of the mechanical work of leg mus-
cles against each other during the stance phase. The
author calculates from his model the kinematics that
minimizes muscular work during locomotion over flat
ground and found a kinematics comparable to the kine-
matics observed in small mammals ([50,52] and over-
view in [24]).

Second: storage or conversion of kinetic energy dur-
ing one phase to recover it in another phase of the
movement [2,3]. Cavagna et al. [12,18] described two
mechanisms: the inverted pendulum during slow mo-
tions and the elastic mechanism during fast movements.
In the first case, kinetic and gravitational potential en-
ergy associated with the motion of the centre of body
mass differ in their phase and this results in a transfer of
kinetic into potential energy and back within the loco-
motor cycle. In contrast to this, kinetic and gravitational
potential energies vary in phase in the elastic mechan-
ism and thus there is no conversion between kinetic and
gravitational potential energy during fast locomotion
but in place the kinetic energy is provisory stored in
elastic element – tendons and muscles [43,45,58] –

and is restored in a next phase of the movement. Elastic
energy storage is assumed for small mammals as well
as for larger mammals [12], although there is no need to
assume it in order to explain their energy balance [37,
38].

The named strategies are a response to the physical
constraints applied by interactions of the body with its
environment. Mechanical interaction as one of the com-
ponents of this interaction (beside physicochemical) is
often explained as the necessity to support the body
weight, i.e. to resist gravitational forces. But this is also
true during locomotion. Inverse dynamic analysis de-
monstrates that the net torques created in the joints by
muscles work mainly against gravity [22,62]. However,
anti gravitational action is only one vector of the me-
chanical interaction.

The stability of locomotion particularly at key events
– as escaping or hunting if stability and manoeuvrabil-
ity are most important – is a second vector of this inter-
action. The study of the relationships between stability
and morphology has to be embedded into one possible
approach described by this contribution.

2. Dynamic stability during locomotion

A standing quadrupedal animal is in static equili-
brium. The feet, as points of ground contact, map a
polygon called polygon of support. As long as the ver-
tical projection of its centre of body mass remains in-
side the polygon, the animal is said to be statically
stable. This is the case during slow walking, which is
described as a succession of quasi-static equilibriums.
Three legs are always in contact to the ground. The
triangle of support changes periodically, and the vertical
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projection of the centre of mass then moves from one
triangle to the next. At any time the animal is able to
stop its forward motion if the speed is low and therefore
the quantity of movement (mass time speed) is small.
Cartmill et al. [10] show on the basis of a large set of
footfall patterns that quadruped mammals prefer limb
coordinations that maximize the time of existence of
such a polygon of support during walking. If speed is
increased, a preference for limb coordinations that in-
volve diagonal pairs of limbs is given. During trotting,
the polygon is reduced to a diagonal line connecting
one hand and the ipsilateral foot. Thus, trotting animals
have already leaved the frame of a succession of quasi-
static equilibrium state to meet dynamic equilibrium.
Idem gallop, bound, half-bound.

Stability qualifies equilibrium. Equilibrium is said to
be statically stable if a system returns to its initial equi-
librium after a perturbation as for instance a pendulum
after deflection from its vertical position. In case of a
cyclic movement the motion of a system is said stable if
it is able to go back to its nominal trajectory after per-
turbation. This restrictive definition of dynamic stability
represents more than simply remaining on the feet.
Since motion of a living organism underlies variability,
the given definition is rarely realized in nature. In many
studies on stability of motion systems, particularly in
the robotics, a system is more pragmatically assumed
stable if it reaches a neighbour stable state after a per-
turbation, even if it does not return exactly to its nom-
inal state.

3. Addressing the right degree of complexity

Locomotion is generally described as the behaviour
that results from the interaction of the musculoskeletal
system and the neural system and environment compo-
nents. It is a complex task whose exhaustive description
would require hundreds of variables. The aim of our
modelling is to reduce the number of variables – i.e.
the number of degrees of freedom (d.o.f.) – to a neces-
sary minimum.

Due to the different physical mechanisms acting in
slow and fast locomotion, the number of d.o.f. is re-
duced by addressing these two types of locomotion se-
parately.

Applying Newton’s first principle of dynamics, the
forces exerted by the limbs on the ground (i.e. ground
reaction forces) and measured by the use of ergo meters
[11] can be doubly integrated numerically. The integra-
tion leads to the motion of the centre of mass (c.o.m.) of
the body.
During trotting and in-phase gaits, motions of the
centre of mass of mammals occur mainly in the para-
sagittal plane. At trot, gait symmetry and resulting tor-
sions of the spine around the longitudinal body axis
lead this parasagittal motion of the CoM. At in-phase
gaits, spine bending movements lead to extensive para-
saggital movements of the pelvis, which contribute up
to half of the stride length in small mammals [21,23,24,
51]. Therefore, the lateral excursion of the centre of
mass is smaller than its vertical ones. Thus, modelling
a quadruped mammal during fast locomotion is reason-
able in a two-dimensional plane, whereas a two-dimen-
sional model of slow locomotion will be a partial de-
scription of the reality. It is assumed that models deal
with straightforward locomotion.

Most simulations studies of the last 15 years can be
classified into three types, which differ in the descrip-
tion of the interaction between neuronal and mechanical
systems and emerged after the publication of three basic
articles: Taga [57] modelled a rough musculoskeletal
and a rough nervous system separately, whose interac-
tion produces a stable cyclic motion. McGeer [31] stu-
dies the passive walking of a structure along an inclined
plane, and investigates the passive properties of the me-
chanics disregarding voluntary the role of the nervous
system. In direct line to the works of Cavagna and Tay-
lor, Blickhan [7] proposed a synthetic model taking into
account elastic energy storage during running: the
spring-mass model.

3.1. Multibody dynamics

Tagas’ purpose [57] was to test whether a stable
walk is able to emerge from the interaction between a
mechanical and a nervous system, defined as follows.
The mechanical structure was modelled by a series of
rigid segments – three for each limb and a rigid trunk.
Taga associates a couple of neuro-oscillators with each
limb joint, an assumption founded on its existence in a
primitive species – the lamprey [30] and a presumption
of its existence in other species. The localization of the
neuro-oscillators was recently identified in a tetrapod
[13]. Each pair of neuron influences the pair of the ad-
jacent proximal joint. A relatively simple mathematical
neuron model (integrator) was assumed. Torques acting
at the joints were assumed proportional to the output
signal of the neurons. Taga was able to get the model
walking stably through the settings of the ‘right’ values
of the parameters into the model. This study became the
core of others, integrating almost all bones and muscles
[36], optical sense, and obstacle avoidance into the neu-



R. Hackert et al. / C. R. Palevol 5 (2006) 541–549544
ro-controller. With this, the number of degrees of free-
dom of Tagas’ basic model was considerably increased.
The proposed neuro-controllers and their development
largely founded the success of actual Japanese huma-
noid robots.

Morphologists can learn from complex simulations
if they address the right level of complexity. But the
quality of the extrapolations made with very complex
models (e.g., [36]) with hundred of variables is rather
poor. Due to the extremely large parameters space and
the redundancy in the models (however redundancy is
also present in living systems), the search for optimal
value of some chosen variable with regard to stability
does not lead to significant results, since changes in the
value of one parameter can easily be compensated by
the change of others.

Thus, for the study of the evolution of musculoske-
letal design, it seems to be more promising to compre-
hend a construction step by step and reconstruct it step-
wise. In the field opened by Taga’s work – i.e. coupling
of one mechanical and one neuronal system – as a mor-
phologist, the most interesting simulations are the at-
tempt to discover how few features of the reality is ne-
cessary to let a given behaviour emerge. With this aim,
Ijspeert [39] investigates for instance the transition from
a standing wave to a travelling wave during the loco-
motion of a salamander transiting from land to water.

3.2. Passive walking dynamics

McGeer [31] designed (originally) a toy that was
able to walk down along a slope without additional ex-
ternal control, propelled only by the gravitation. Bipe-
dal passive walker models and robots were then devel-
oped with anthropomorphic dimension with or without
knees and/ or feet [14,26,32]. A periodic input of en-
ergy at the hip even enables a stable walk on a horizon-
tal and even ground. More recently Collins et al. [15]
developed a 3D simulation model including arms,
whose movements stabilized the model successfully
[41]. Despite the fact that passive walker actually dis-
regard some features of the walking motion (ankle ex-
tension at the end of the stance phase for instance), this
main result demonstrates that the body mechanics do
not only evolved in order to enable an economic walk-
ing, but also a stable walking, and that this mechanical
stability is founded on synergies in the motion of the
different part of the body. The results give raise to con-
ceptual development. Following this, is it appropriate to
subordinate the musculoskeletal system to the nervous
system in the case of a cyclic (automatic) motion? Or
should we accept the idea that mechanics control the
neuronal system just like the neuronal system control
mechanics [9]?

3.3. Spring-mass models for fast locomotion

Blickhan [7] found a roughly linear relationship be-
tween the ground reaction force and the distance from
the centre of mass to the point of ground contact at the
preferred hopping frequency of humans. He introduced
the spring-mass system in order to model this relation-
ship (Fig. 1A). The spring-mass model has only five
degrees of freedom (mass, spring stiffness, spring
length, speed vector, angle of attack) and fitted the ex-
perimental data with a precision more than 20% in the
range of measurement. It comes up to the requirement
of Cavagna et al. [12] that the energy balance of mid-
dle- and large-sized mammals during fast locomotion
cannot be explained without assuming elastic-energy
storage. The described linearity is surprising, because
force–length relationships of an isolated muscle are
not linear, the geometry of bones head articulation is
not circular and thus the relation of the lever arm of a
given muscle versus joint aperture is also not linear. The
integration of these components leads first to a linear
force–length relationship [61].

Farley et al. [16,17] extended the validity of the
spring-mass model to the description of trotting quad-
rupeds. In this description, the spring represents the ac-
tion of a pair of diagonal limbs. Hackert et al. [33,35]
confront the spring-mass model to in-phase gaits of
small mammals and showed that the force–length rela-
tionships in forelimbs were also roughly linear in small
mammals. But linearity is achieved as a consequence of
the intense sagittal spine flexion at in-phase gaits that
shifts the centre of body mass cranially [34]. A roughly
linearity of the force–length relationships means that
the stiffness – this means the ratio of the change in
the force (measured in Newton) through the corre-
sponding change in a length (deformation) – is almost
constant during the stance phase of forelimbs. The role
of limb’s stiffness (in N m–1) – and thus the role of
compliance – was already recognized as one determi-
nant of locomotion [7,8,47,48], but its direct involve-
ment in the achievement of a dynamic stable locomo-
tion was demonstrated clearly only recently.

4. Stiffness of a structure and dynamic stability

The stiffness of a musculoskeletal structure can be
split into two major components: (i) a passive compo-



Fig. 1. (A) The spring-mass system for running and hopping in humans [7]: the position vector r can be computed integrating numerically the
equation of motion. Model parameters are speed vector v, mass M, stiffness k, length of the spring and angle of attack β at touch down. (B)
Distribution of the spring elasticity onto rotational springs located at the articulations. In this way morphological parameters as segment length are
introduced into the models [55]. (C) Spring-mass model of a half-bounding small mammal [33]. Back flexion/extension translates the centre of mass
horizontally during half-bound leading to adjustments of the angle of attack β. (D) The dynamic stability of the spring-mass system. The simulations
were done for each combination of the stiffness and the angle of attack. The colours represent the number of steps up to 25 performed stably by the
model. An extended J-region of stability exists for β larger than a threshold value of about 25°. (E) Limbs of some terrestrial birds: A result of the
numerical simulation of the dynamics of the three segmented spring limbs with symmetrical loading: to a short femur corresponds a long third
segment and vice versa. Does dynamic stability constraint the evolution of our morphology?
Fig. 1. (A) Le système masse–ressort pour la course et le saut [7] : le vecteur position r est calculé en intégrant numériquement l’équation vectorielle
du mouvement. Les paramètres du modèle sont le vecteur vitesse v, la masse M, la raideur k, la longueur à vide du ressort et l’angle d’attaque β à
l’instant du posé. (B) Distribution de l’élasticité du ressort sur des ressorts de torsion associés aux articulations. Ainsi des paramètres
morphologiques, tels que la longueur des segments peut être introduite dans le modèle [55]. (C) Modèle masse–ressort d’un petit mammifère
pratiquant le half-bound [33]. L’extension/flexion du dos translate le centre de masse horizontalement pendant le half-bound, conduisant à des
ajustements de l’angle d’attaque β. (D) La stabilité dynamique du système masse–ressort. La dynamique a été simulée pour chaque combinaison de
la raideur et de l’angle d’attaque. Les couleurs représentent le nombre de cycles locomoteurs réalisés stablement par le modèle. Une région de
stabilité étendue en forme de J existe pour des valeurs de β plus grandes qu’une valeur seuil, ici 25°. (E) Les membres de quelques oiseaux
terrestres: Un résultat de la simulation numérique de la dynamique d’une jambe élastique tri-segmentée avec chargement symétrique : à un court
premier segment correspond un troisième long segment, et vice versa. La stabilité dynamique contraint-elle l’évolution de notre morphologie ?
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nent linked to the intrinsic properties of the materials
and (ii) an active component (depending on muscle ac-
tivation and geometry). Muscles force does not neces-
sary result in movement. If agonist and antagonist mus-
cles are activated synchronously so that torques of
agonist and antagonist muscles remain in equilibrium,
no movement will occur in the articulation, but its stiff-
ness will be increased. Feldman [19] demonstrates that
the control of only one parameter is sufficient to control
joint stiffness and aperture.

Dynamic stability of the spring-mass system – i.e. its
ability to bounce stably – was studied first by Schwind
and Koditchek [53]. They derived an analytical criter-
ion from the linearised (i.e. approximated) equation of
motion. Seyfarth et al. [54] performed dynamic simula-
tion of a non-linearised model and demonstrate its abil-
ity to bounce stably for some combinations of the for-
ward speed, the spring-leg stiffness and the angle of
attack, which is the angle spanned by spring leg with
the ground line at the instant of touch down. That is
within a range of values of stiffness and angle of attack
and mass position a stable behaviour can be generated
(Fig. 1D). Thus small irregularities of the ground that
would result in small changes of the mass position re-
lative to the ground can be overcome without resetting
the values of the system, i.e. without control. This con-
cept of a mechanical stabilisation without external con-
trol is known in physics as self-stabilization.

Approximations are numerous by spring-mass mod-
els. During forward movement, the spring-mass model
describes only the stance phase of a spring leg, not the
swing phase. The spring leg is assumed to be massless
and from the point of view of the dynamics a massless
object cannot realize a motion. Thus, in the simulation,
the leg is artificially positioned with a given angle of
attack during the flight phase of the spring-mass system
before the next ground contact. This is an important
restriction, but 85% of the mass is included in the
head–trunk structure in small mammals. Limbs of small
mammals are light indeed and therefore assuming
massless legs is appropriate. Additionally, the model
assumes that ground reaction forces keep the direction
of the spring – towards the centre of mass – and this is
true as well in humans as in quadrupeds at constant
speed and during the middle stance phase [6].

The comparison between the spring-mass system
and galloping small mammals show additional descrip-
tive limits. The simple spring-mass model trajectory
undulates with one maximum and one minimum per
cycle, whereas the centre of mass of galloping small
mammals may have more than two extremums within
each locomotor cycle. This gives rise to the develop-
ment of extended spring-mass models in order to take
the back dynamics into account (Fig. 1C). Hackert and
Fischer [35] propose to see the flexion of the spine in
small mammals and the associated forward displace-
ment of the centre of mass as a way to adjust the angle
of attack of forelimbs and thus to use mechanical self-
stabilization mechanism. Back flexion co-determines
the position of the centre of mass and back stiffness sets
the rough instant of touch down of the forelimb by con-
trolling the downwards motion of the centre of mass
during hindlimbs’ stance phase. In respect to the simple
spring-mass system, Seyfarth et al. [56] implement a
rotation of the spring leg during its late swing phase
when the mass has reached the apex of its trajectory.
With this, the authors show that a tuning of the instant
and verticality of the leg at touch down may influence
positively the dynamic stability of the system. This may
explain the retraction of the forelimb observed in gal-
loping mammals before touch down [24].

5. Models and templates: Learning from
neuromechanical models stepwise

The spring-mass model developed from the status of
a simple mechanical model for human hopping to a
neuromechanical template. Full and Koditschek [25]
proposed to face the spring mass template like an
asymptotical limit to which running systems tend to.
Moreover, the authors conceptualized a method (rather
new in the field of motion studies) to handle with com-
plex system involving a lot of degrees of freedom. First:
reduce the number of degrees of freedom by projecting
the problem onto one plane, second then model it in
this plane, then progressively include new additional
degrees of freedom. This method is comparable to the
early stage of movement learning in child [5], when
degrees of freedom are introduced and the stiffness of
the limbs reduced stepwise during growth [49].

The introduction of the neuromechanical parameter
‘stiffness’ leads to a level of description that enables
provisory to ‘disregard’ how the stiffness is generated,
i.e. to disregard the muscles, their insertion and activa-
tion. The number of degree of freedom of the biome-
chanical model becomes then considerably lower.

6. Distribution of the global stiffness onto the joints

The spring-mass model is a model at the level of
organisms. Limb stiffness can be compared between
species after normalization by mass and length.
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Blickhan and Full [8] introduce the relative stiffness
k = (Fmax/m g)/(Δl/l) and found a value around 8 for
animals as different as insects and horses. This conveys
that animals segmented limbs have comparable material
characteristics.

For comparative anatomists, global models as the
spring-mass model are less informative since morpho-
metric data normally are not involved in the models. It
is possible to introduce them into a model, by distribut-
ing the elasticity (of the spring) onto the joints and thus
by introducing a massless polysegmental kinematic
connected with rotational springs (Fig. 1C). The stiff-
ness is then the ratio variation of the joint torque over
variation of the joint aperture, i.e. the slope of the tan-
gent at the torque-aperture characteristics.

Seyfarth et al. [55] studied the stability of a massless
three segmented leg very much in detail (for equations,
see [55]) in order to describe its stabilizing behaviour in
dependence to its initial configuration (zigzag or arc-
like) and stiffness laws (constant or variable). The mod-
el assumes that the rotational springs act at the joints in
a quasi elastic mode without dissipation, i.e. joint tor-
ques have the form Ti = ki (ϕ – ϕ0)

ν (Eq. (1)). That is
the torques–angle characteristics do not show hyster-
esis. Neglecting the torques at the foot pad, the torques
equilibrium equation then simplifies into T1 d1 + T2 d2
= 0 (Eq. (2)) (Fig. 1B). Seyfarth et al. assumed a sym-
metric loading of the limb during stance phase: the
compression of a zigzag-like kinematical chain depends
on the stiffness of its joints. With similar values of
joints stiffness, a load results in a flexion of all joint
angles at a time to the same extent, else the segmental
chain would collapse first at the joint of less stiffness
than others. But studies on the intralimb kinematics of
small mammals [24,27] and birds [1,58] during running
show that changes occur in all joints at the same time
and thus point to symmetrical loading and stiffness
equilibrium.

Assuming symmetrical loading the torques equili-
brium equation (Eq. (2)) then simplifies into k12/k23 =
l1/l3 (Fig. 1B), whereas the length of the second seg-
ment vanish from the equations [49]. Numerical simu-
lations of in place hopping of this elastic limb model
lead to the following result: stability is enhanced if a
short first segment corresponds to a long third segment
and reciprocally [49]. Fig. 1E presents limb geometry
of some terrestrial birds. Birds seem to follow this sim-
ple ‘rule’.

Nowadays no quadruped model has been studied in
the same detail. One prerequisite is a better experimen-
tal knowledge of the torque–aperture characteristics in
quadruped mammals in order to limit the parameter
space in the simulations. The experimental determina-
tion of the torque–aperture relationships (and following
of the stiffness laws) at the level of each joint is acces-
sible performing inverse dynamic calculations of the
limbs. These experimental characteristics will also point
out the level (distal versus proximal) at which energy
dissipation occurs in the limbs during a cycle of gallop.
Spring-mass models disregard up to now fully energy
dissipation up to the theoretical work of Berkemeier [4].
Inverse dynamic analysis is in small quadruped mam-
mals a rather difficult but realizable task [57] since it is
necessary to record separately the force exerted by each
limbs. Outgoing from the torque–aperture relationships
numerical simulations of a segmented biomechanical
model of a quadruped with few degrees of freedom
could be calculated looking for ‘optimal’ limb propor-
tion with regard to the robustness of stability, i.e. the
degree of disturbance the structure will accept to over-
come without falling. The robustness of stability can be
considered as an optimization criterion in the frame of
the mechanical self-stabilization hypothesis.

7. Concluding remarks

The influence of morphology onto stability cannot
be understood intuitively and necessitates the use of
numerical simulations. Stability emerges for some value
of the parameters – segment’s length, articular stiff-
ness…– and is fundamentally unpredictable. The hy-
pothesis that intrinsic stability of the musculoskeletal
mechanics exerted an evolutionary pressure that lead
to the real body proportions was recently sustained by
some simulation studies [33,54] that found a good cor-
respondence between the values of the parameters that
stabilize spring-mass models of humans and small
mammals running, on the one hand, and the experimen-
tal values of stiffness and angle of attack, on the other
hand. If stability generally results from the common
action of the nervous and mechanical system, the ner-
vous system can find in a self-stabilized mechanics a
way to delegate and thus to improve one part of its
work, particularly at high speed, where the reaction
times have to be kept short. This would accord well
with the decentralized structure of neural control (see
Viala [60] and Jamont [40] in this issue).

Actual small mammals, whose size is comparable to
the oldest fossils of mammals, are a common point of
interest for the paleontology and functional morphol-
ogy. They are good candidates for the required experi-
mental determination of the torque–aperture character-
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istics. Their body size enables for the most precise lo-
calization of all joint positions, including the most
proximal using monoplanar videoradiography in a two
dimensional frame. Moreover, their size enables for the
measurement of the ground reaction forces over many
locomotor cycles, a prerequisite for a valuable integra-
tion of the ground reaction forces and thus for the de-
termination of the position of the centre of mass. Thus
small mammals are appropriate to perform inverse dy-
namic calculations combining high-speed videoradio-
graphy (500 fps), force measurement and complemen-
tary electromyography. The synchronization of all these
signals is – 100 years after Marey’s effort to capture the
instant in the movement – a realizable [22,29] but ex-
ceptional task in integrative animal motion studies. Dy-
namic simulations on ‘hybrid’ models of model B and
C (Fig. 1) should reveal whether the enhancement of
the robustness of the mechanical self-stabilisation dur-
ing locomotion acted as one determinant factor during
evolution leading to actual body proportions.
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