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Abstract

Because the end-Permian mass extinction was the largest mass extinction since the Cambrian, numerous studies have focused
on taxonomic changes and patterns immediately before and after the Permian/Triassic boundary. This synthesis of paleoecologi-
cal data demonstrates that the end-Permian mass extinction and the Early Triassic aftermath were ecologically, as well as taxo-
nomically, significant events in the history of life. A variety of short-term and long-term structural changes in ecosystems and
paleocommunities were facilitated by deleterious environmental conditions that persisted through the Early Triassic. To cite this
article: M.L. Fraiser, D.J. Bottjer, C. R. Palevol 4 (2005).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Restructuration des communautés benthiques de mers peu profondes induite par un stress environnemental pro-
longeant la crise biologique de la fin du Permien. Les extinctions massives qui se sont produites vers la fin du Permien se
rattachent à la crise biologique la plus importante depuis le Cambrien. Aussi de nombreuses études ont-elles porté sur les
changements taxonomiques intervenus immédiatement avant et après la limite Permien–Trias, ainsi que leurs modalités. La
présente synthèse des données paléoécologiques établit que la crise de la fin du Permien et ses répercussions pendant le début du
Trias constituent des événements capitaux de l’histoire de la vie, tant sur le plan écologique que taxonomique. Un ensemble de
changements structuraux, à court et à long terme, affectant à la fois les écosystèmes et les paléocommunautés, fut entretenu par
des conditions environnementales hostiles, qui persistèrent durant tout le début du Trias. Pour citer cet article : M.L. Fraiser,
D.J. Bottjer, C. R. Palevol 4 (2005).
© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The end-Permian mass extinction signifies the larg-
est decrease in global biodiversity in the Phanerozoic
[48]; several causes for this biotic crisis have been pro-
posed, including hypercapnia (CO2 poisoning) [33],
global marine anoxia [28,29,66], extraterrestrial impacts
[5], and intense volcanism [49]. Physiological and
chemical stresses likely linked to the end-Permian mass
extinction pulsed throughout its aftermath during the
Early Triassic (Scythian), as evidenced by isotopic
[2,35,44] and sedimentologic [68] data; hypercapnia
and marine anoxia are the most widely cited mecha-
nisms for the prolonged environmental stress [35,59,
65,66]. A taxonomic pattern, the extinction of a signifi-
cant proportion of the world’s biota in a geologically
insignificant period of time [28] was the first signal that
a major change in paleocommunities occurred approxi-
mately 250 Myr ago. Thus, numerous studies subse-
quently have focused on taxonomic changes and pat-
terns at the Permian/Triassic boundary to determine the
timing of the extinction [56,57], and throughout the
Early Triassic aftermath, to determine the nature of
taxonomic recovery [17,24,43,62].

However, taxonomic data alone are insufficient for
discerning ecological patterns and processes [15,42].
Furthermore, the most significant results of mass extinc-
tions actually may be the establishment of the new eco-
logical patterns that arise during the aftermath [14,15].
Bottjer et al. [6] determined that the entire Early Trias-
sic aftermath of the end-Permian mass extinction expe-
rienced severe ecological degradation; ecospace utili-
zation had been reset to the level of the Late Cambrian/
Early Ordovician because of prolonged environmental
stresses. The short- and long-term consequences of the
Latest Permian/Earliest Mesozoic environmental per-
turbations on paleocommunity structure are still being
deciphered, but mounting research indicates that the
aftermath of the end-Permian mass extinction was as
crucial as the mass extinction in shaping the evolution-
ary history of life on Earth. A current synthesis of the
short-term and long-term structural changes in benthic
level-bottom shallow marine paleocommunities that

occurred during the Early Triassic, as well as evidence
that these structural changes resulted from the environ-
mental stresses during the Paleozoic-Mesozoic transi-
tion, is presented here.

2. Proxies for assessing structural changes in
benthic level-bottom shallow marine
paleocommunities

Structural changes within benthic level-bottom shal-
low marine paleocommunities during the aftermath of
the end-Permian mass extinction are indicated by vari-
ous types of paleoecological data. Included in this
synopsis are data on alpha diversity, taxonomic domi-
nance, relative abundance, tiering, Bambachian mega-
guilds, and biosedimentary fabrics (ichnofabrics, shell
beds, and wrinkle structures). Except in the discus-
sions of Early Triassic tiering and Bambachian megagu-
ilds, body fossils and trace fossils are treated sepa-
rately because trace fossils represent behavior of
organisms; tiering and Bambachian megaguilds are
paleoecological gauges that evaluate the combined epi-
faunal and infaunal characteristics of paleocommuni-
ties to assess broad-scale changes in adaptive strate-
gies.

2.1. Taxonomic patterns

2.1.1. Biodiversity and taxonomic dominance among
the Early Triassic skeletonized invertebrate fauna

Taxonomic patterns, such as alpha diversity (spe-
cies richness) and taxonomic evenness/dominance, are
useful as the initial indicators of change in community
structure [3,45,56]. In Early Triassic benthic level-
bottom marine communities around the world, alpha,
beta, and gamma diversity were very low. Mollusks,
brachiopods, and echinoderms are the only higher taxa
with known macroscopic benthic fossil representatives
[54], even in regions interpreted to have experienced
rapid recovery [64]. Compared to the Late Permian and
the Late Triassic, taxonomic diversity among these skel-
etonized groups remained low throughout much of the
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Early Triassic around the world [10,17,54].Alpha diver-
sity of Early Triassic macroinvertebrate paleocommu-
nities was low (average = 13) [54] and more closely
resembled that of Lower Paleozoic paleocommunities
than typical Upper Paleozoic or other Mesozoic paleo-
communities [6]. Global pre-extinction taxonomic
diversities did not appear until the Middle Triassic (Ani-
sian) [17]. Low alpha, beta, and gamma diversity among
the skeletonized macroscopic biota during the Early Tri-
assic represents a short-term structural change in
benthic level-bottom shallow marine communities.

A shift among the taxonomic dominants in benthic
level-bottom marine paleocommunities was also facili-
tated by the end-Permian mass extinction and the Early
Triassic aftermath, and represents a long-term struc-
tural change in paleocommunities that persisted for the
remainder of the Phanerozoic. Rhynchonelliform bra-
chiopods were taxonomically dominant during the
Ordovician to the Permian and dominated the Paleo-
zoic Evolutionary Fauna for nearly 500 Myr, but the
Mesozoic and Cenozoic are dominated by gastropod
and bivalve taxa, the major constituents of the Modern
Evolutionary Fauna [56]. Despite this Evolutionary
Fauna pattern, bivalves and rhynchonelliform brachio-
pods were taxonomically dominant in certain marine
environments during the Paleozoic [36] and Mesozoic
[52], respectively. However, the end-Permian mass
extinction precipitated the global abrupt phyletic switch
from the Paleozoic Fauna to the Modern Fauna [22,56].

2.1.2. Ichnogeneric diversity
Changes in ichnofossil taxonomic patterns after the

end-Permian mass extinction are not long-term and last
only during the Early Triassic. Early Triassic ichnoge-
neric diversity in low paleolatitudes is low compared
to Uppermost Permian strata but increases through the
Early Triassic [44,59,61]. While ichnogeneric diver-
sity remained high in high paleolatitudes (see refer-
ences in Pruss and Bottjer [46]), in oldest Lower Trias-
sic (Griesbachian) strata deposited at low paleolatitudes
in western Paleotethys, the horizontal trace fossil Plano-
lites is commonly the only ichnofossil present [59]. The
reappearance of Diplocraterion in the Late Griesba-
chian/Early Dienerian and of Rhizocorallium in the
Smithian/Spathian may be somewhat synchronous
around the world in low paleolatitudes [59,61].
Thalassinoides, which has been used as an indication
of a return of ‘normal’ marine conditions, reappears in

latest Griesbachian-Dienerian age strata deposited in
high paleolatitudes [61,67] and in upper Lower Trias-
sic (Spathian) strata deposited in low latitudes [46], indi-
cating that recovery was not uniform around the world
[46,61]. Planolites, Arenicolites, and Diplocraterion are
the most common ichnogenera in Lower Triassic strata
around the world [54,59,67].

2.2. Paleoecologic patterns

2.2.1. Relative abundance of Early Triassic
skeletonized invertebrates

The most abundant members of a community, eco-
logical dominants, may be more important than spe-
cies richness in governing energy flow, trophic struc-
ture, and species composition of communities [12,23,
58]. Therefore, determination of the most abundant
organisms in Early Triassic paleocommunities pro-
vides a more complete understanding of short-term and
long-term changes in community structure after the end-
Permian mass extinction.

Ecological dominance among the skeletonized biota
in benthic level-bottom marine paleocommunities can
be assessed from the fossil record using distinctive bio-
facies, shell bed composition, and relative abundance
data [11]. Relative abundance data and shell bed sur-
veys indicate that Early Triassic paleocommunities from
a wide range of level-bottom benthic marine environ-
ments around the world were numerically dominated
by very few taxa. Worldwide during the Griesbachian,
many paleocommunities in nearshore to middle shelf
marine environments were numerically dominated by
the inarticulate brachiopod Lingula [49]. Intermit-
tently throughout the Griesbachian, Dienerian, and
Smithian, paleocommunities from low paleolatitudes
around the world are dominated by large numbers of
three species of microgastropods (gastropods < 1 cm
in height) [20] that commonly form a microgastropod
biofacies unique to the Lower Triassic [21]. Bivalves,
however, are the most numerically dominant group in
Early Triassic benthic level-bottom shallow marine
paleocommunities [20,54] and primarily only three gen-
era (Eumorphotis, Promyalina, Unionites) are respon-
sible for the group’s numerical dominance [18]. Abun-
dant crinoids and echinoids are only found at some
intervals in the late Early Triassic [38,53]. Compari-
sons to Modern communities and paleocommunities
throughout the Phanerozoic indicate that, in terms of
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ecological dominance, Early Triassic paleocommuni-
ties around the world are non-actualistic and anoma-
lous (see references in [20]). The numerical domi-
nance of Lingula, microgastropods and bivalves in Early
Triassic paleocommunities has been attributed to oppor-
tunistic behavior of these organisms; opportunistic
behavior subsided by the latest Early Triassic
[20,21,51].

A long-term, permanent change among the ecologi-
cal dominants in level-bottom benthic marine paleo-
communities also occurred at the Permian/Triassic
boundary. An ecologic switch in benthic level-bottom
marine environments between rhynchonelliform bra-
chiopods, which numerically dominated Paleozoic
paleocommunities, and bivalves, which dominated post-
Paleozoic paleocommunities, was triggered by the end-
Permian mass extinction and facilitated by conditions
during the Early Triassic aftermath [18]. Though
bivalves and rhynchonelliform brachiopods are present
in large numbers (and even dominant) in certain envi-
ronments during the Paleozoic [36] and the Mesozoic
[52] respectively, the Early Triassic marks the first time
in Earth’s history that bivalves are numerically domi-
nant globally in nearly all marine environments [18].

2.2.2. Extent of bioturbation (ichnofabric indices)
Though not directly correlative to determining the

relative abundance of body fossils, determining the
cumulative amount or extent of bioturbation in Lower
Triassic strata using ichnofabric indices [13] provides
an indication of the amount of infaunal activity during
the aftermath of the end-Permian mass extinction. Very
little data on extent of bioturbation is available from
Permian and Middle Triassic strata, but general pat-
terns that resulted from the end-Permian mass extinc-
tion are discernible from the present literature. The
extent of bioturbation decreases from ii5–6 in the Upper
Permian [60,63] to ii2 in the immediate aftermath of
the end-Permian mass extinction in eastern Panthalassa
[54], western Paleotethys [60], and the Boreal ocean
[63]. Like ichnodiversity, the decrease in extent of bio-
turbation was short-term and the extent of bioturbation
increased throughout the Early Triassic, so that beds
with ii5 and ii6 are characteristic of the Spathian
[46,59,61].

2.2.3. Tiering
Tiering, the vertical subdivision of space by organ-

isms above and below the benthic boundary layer, is

useful for evaluating paleocommunity structure because
it reflects resource and space partitioning by organisms
[1]. Epifaunal and infaunal tiering were reduced as a
result of the end-Permian mass extinction, and reestab-
lishment of the highest and deepest tiers varied through-
out the Early Triassic. During the earliest Early Trias-
sic (Griesbachian, Nammalian), epifaunal tiering,
primarily by bivalves, microgastropods, and the inar-
ticulate brachiopod Lingula, was confined to the 0 to
+5 cm tier in low paleolatitudes around the world [6,54].
The reappearance of crinoids during the Smithian in
Japan [30] added the +5 to +20 cm tier back in some
paleocommunities, but this tier was not characteristic
of benthic level-bottom shallow marine paleocommu-
nities until the late Early Triassic (Spathian), at least in
low paleolatitudes (with the reappearance of abundant
crinoids) [9,27,53]. Infaunal tiering in pre-extinction
strata, indicated by trace fossils, occupied the 0 to
–6 cm, the –6 to –12 cm, and the –12 to –100 cm tiers
[67]. Infaunal burrowers, including the Arenicolites and
Diplocraterion tracemakers, only occupied the 0 to
–6 cm tier during the Griesbachian in eastern Pan-
thalassa and western Paleotethys [46,50,63]; by the
Dienerian in western Paleotethys and by the Smithian
in eastern Panthalassa, Arenicolites and Diplocrate-
rion tracemakers occupied the –6 to –12 cm tier
[6,54,59,61]. The reappearance of higher tiers (due to
the reappearance of crinoids) in Neotethys during the
Griesbachian has been used as an indication of rapid
recovery in this region [61]. Early Triassic reductions
in epifaunal and infaunal tiering were short-term struc-
tural changes in benthic level-bottom shallow marine
communities.

2.2.4. Benthic Bambachian megaguilds
In addition to tiering, another method of evaluating

the short- and long-term changes in ecospace utili-
zation during the Early Triassic is by determining
which combinations of mode of life and feeding type,
or Bambachian megaguilds (cf. [14]), were present
and/or absent. Of 17 possible benthic Bambachian
megaguilds [BBMs], only four were occupied during
the Early Triassic [7]: bivalves and rhynchonelliform
brachiopods occupied the epifaunal-attached-low-
suspension-feeding megaguild; crinoids occupied the
epifaunal-attached-erect-suspension-feeding megagu-
ild; echinoids and gastropods occupied the epifaunal-
mobile-herbivore megaguild; and bivalves and inarticu-
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late brachiopods occupied the infaunal-shallow-passive-
suspension-feeding megaguild. The attached-erect-
suspension-feeding megaguild, occupied by crinoids,
reappeared during the Smithian in western Panthalassa
[30], during the Spathian in eastern Panthalassa and
western Paleotethys [9,53], and during the Griesba-
chian in Neotethys [64], indicating that ecospace refilled
at different times around the world. Ecospace remained
fairly empty only for the Early Triassic; eight BBMs
were occupied during the Middle Triassic [54]. How-
ever, more BBMs were occupied during the Mesozoic
and Cenozoic than during the Paleozoic [4], suggest-
ing that conditions during the Paleozoic/Mesozoic
boundary also had a long-term effect on ecospace uti-
lization.

2.3. Biosedimentary structures

2.3.1. Shell beds
Shell beds, densely packed accumulations of bio-

logic hardparts [31], accurately record broad-scale eco-
logical changes and therefore serve as proxies for struc-
tural changes in marine communities, particularly in
patterns of dominance and abundance through geo-
logic time [8,20,21,31,32,34]. Shell beds are abundant
throughout Lower Triassic strata around the world
[8,21] and therefore depict the restructuring that
occurred in benthic level-bottom shallow marine com-
munities during the aftermath of the end-Permian mass
extinction. The majority of Lower Triassic shell beds
range from mm-scale pavements to 20 cm-thick beds;
amalgamated shell beds can reach up to 2 m in thick-
ness [8,21]. The majority of Lower Triassic shell beds
are numerically and taxonomically dominated by mem-
bers of the Modern Evolutionary Fauna [8,21,56].
Lower Triassic shell beds are more similar to shell beds
from the Paleozoic, though, in thickness and geometry
[8]. Therefore, Lower Triassic shell beds represent a
transition from archaic-style shell beds characteristic
of the Paleozoic to modern-style shell beds character-
istic of the post-Jurassic [8].

2.3.2. Wrinkle structures
Wrinkle structures have been found in shallow sub-

tidal siliciclastic paleoenvironments in Lower Triassic
strata in the western United States and in northern Italy
[47]. Wrinkle structures are a type of microbially-
mediated sedimentary structure found commonly in

Proterozoic–Cambrian siliciclastic strata deposited in
intertidal to deep-sea marine environments, the forma-
tion of which has been attributed to the stabilization of
the substrate by microbial mats [25,26,40,41]. In the
post-Cambrian, wrinkle structures have been restricted
to supratidal, intertidal and deep-sea siliciclastic envi-
ronments because of the increase in levels of bioturba-
tion and consequent mixed-layer development during
the Ordovician [26]. Therefore, subtidally-deposited
Lower Triassic wrinkle structures likely formed because
of decreased bioturbation during the aftermath of the
end-Permian mass extinction [47]. The proliferation of
subtidal microbial mats was limited to the Early Trias-
sic and represents another short-term structural change
in benthic level-bottom shallow marine communities.

3. Restructuring in benthic level-bottom shallow
marine communities due to prolonged
environmental stress following the end-Permian
mass extinction

Data from a variety of paleoecological approaches
presented here indicate that benthic level-bottom shal-
low marine communities were restructured during the
Early Triassic (Fig. 1). Using the system of four paleo-
ecological levels which Droser et al. [14] developed as
a comparative approach to assess major ecological
changes in Phanerozoic life, Bottjer et al. [7] showed
that the structural changes in Early Triassic paleocom-
munities can be classified as level-2 (major structural
changes within an ecosystem), level-3 (community-
type level changes within an ecosystem), and level-4
(community-level changes) changes. Some aspects of
the community restructuring (i.e., decrease in biodiver-
sity and the numerical dominance of few taxa) pro-
duced a non-actualistic ecology that lasted only during
the Early Triassic, while other aspects of benthic level-
bottom shallow marine communities were perma-
nently altered (i.e., switch in taxonomic and ecologic
dominants). This synopsis also reveals that taxonomic
and ecologic recovery from the end-Permian mass
extinction was decoupled and was geographically and
temporally varied.

What facilitated the temporary and permanent struc-
tural changes in benthic level-bottom shallow marine
paleocommunities during the Paleozoic/Mesozoic tran-
sition? The short-term ecological restructuring during
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the Early Triassic has been underscored in the litera-
ture because it indicates that recovery from the end-
Permian mass extinction and the return to ‘normal’
marine communities did not occur until 5–6 Myr after
the extinction [37,39]. Three mechanisms to explain
Early Triassic non-actualistic paleoecology and the
apparent delayed biotic recovery have been hypoth-
esized (cf. [17]): (1) physiologically harsh environmen-

tal conditions persisted long after the end-Permian mass
extinction, inhibiting ‘normal’ community develop-
ment; (2) Earth’s biota needed an exceptionally long
time to rewrite community assembly rules after marine
ecosystems were profoundly disrupted by the end-
Permian mass extinction; and (3) a preservation and
sampling bias indicates that Early Triassic non-
actualistic paleoecology is more apparent than real and

Fig. 1. Generalized short-term and long-term structural changes among skeletonized invertebrates and infauna in benthic level-bottom shallow
marine paleocommunities before, during, and after the Early Triassic aftermath of the end-Permian mass extinction. In this figure: (1) alpha
diversity indicates mean number of species in paleocommunities from variable nearshore and from open marine environments (data from
[3,6,54]); 2) data on taxonomic and ecologic dominants refers to the general pattern (data on taxonomic dominants from [22,56]; data on
ecologic dominants from [18,20,21,49,54]); (3) ichnofabric indices for the Upper Paleozoic and post-Early Triassic represent our best estimates;
ichnofabric indices for the Early Triassic represent characteristic bioturbation of each stage/substage; data from low paleolatitudes only (data
from [46,54,59-61,63]); (4) epifaunal and infaunal tiering refers only to characteristic tiering (data from [1,6,9,27,30,46,50,53,54,59,61,67]); (5)
benthic Bambachian megaguilds refers to number of megaguilds occupied (data from [4,7]; (6) shell bed data from [8,32]; (7) wrinkle structure
data from [25,26,47]. Ichnogeneric diversity was omitted because it varies greatly with latitude and because more comparative studies need to be
done. Date of 252.6 ± 0.2 Myr represents the age of the end-Permian mass extinction [39] and 247 Myr is the most recent age for the Early–
Middle Triassic boundary [37].
Fig. 1. Vue globale des changements structuraux, à court et à long terme, intervenus chez les invertébrés à squelettes et chez l’endofaune faisant
partie des paléocommunautés benthiques de mers peu profondes, avant, pendant et après l’intervalle de temps répercutant, au début du Trias, les
effets de la crise de la fin du Permien. Dans cette figure : (1) la diversité alpha indique le nombre moyen des espèces des paléocommunautés des
domaines littoraux et des environnements marins du large (données d’après [3,6,54]) ; (2) les données concernant les groupes dominants d’un
point de vue taxonomique et écologique se rapportent à des modèles généraux (données d’après [22,56] pour les dominants taxonomiques,
données d’après [18,20,21,49,54] pour les dominants écologiques) ; (3) les indicateurs de la biostructuration du Paléozoïque supérieur et pos-
térieurs au début du Trias nous paraissent la meilleure approximation ; les indicateurs de la biostructuration du début du Trias consistent en des
phénomènes de bioturbation propres à chaque étage ou sous-étage ; les données correspondent uniquement aux basses latitudes (données d’après
[46,54,59-61,63]) ; (4) l’étagement de l’épifaune et de l’endofaune se rapporte uniquement à des étagements caractéristiques (données d’après
[1,6,9,27,30,46,50,53,54,59,61,67]) ; (5) les mégaguildes de Bambach sont des associations benthiques correspondant au nombre de mégaguil-
des représentées (données d’après [4,7]) ; (6) les données sur les bancs coquilliers proviennent de [8,32] ; (7) les données sur les figures de
froissement (wrinkle structures, d’origine microbienne) proviennent de [25,26,47]. La diversité générique des ichnofossiles n’a pas été figurée,
car elle varie beaucoup avec la latitude ; de plus, des analyses comparatives sont encore nécessaires. L’âge de 252,6 ± 0,2 Ma est celui des
extinctions de la fin du Permien [39], tandis que 247 Ma est l’âge le plus récemment avancé pour la limite Trias inférieur/Trias moyen [37].
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makes the biotic recovery following the end-Permian
mass extinction only appear to be delayed.

Several lines of data support the hypothesis that
physiologically harsh environmental conditions per-
sisted long after the end-Permian mass extinction.
Though no proposed mechanism is widely accepted as
its definitive cause, ever-increasing sedimentological
[35,47,68] and isotopic [35,44] data from around the
world indicate that deleterious environmental condi-
tions affected marine ecosystems for 5–6 Myr after the
end-Permian mass extinction. This prolonged environ-
mental stress is likely linked to the end-Permian mass
extinction and facilitated the ecological degradation and
short-term restructuring observed in benthic level-
bottom shallow marine Early Triassic paleocommuni-
ties [20,51,54,59]. The long-term, permanent changes
in paleocommunities (i.e., phyletic and ecologic
switches) also were facilitated by the harsh environ-
mental conditions that prevailed during the Earliest
Mesozoic. The hypothesis that the magnitude of the
extinction so disrupted normal communities that the
biotic recovery from the end-Permian mass extinction
was delayed [16,17] is not completely unsupported.
According to Erwin and Pan [17], if ecospace restruc-
turing caused the delayed recovery, then the length of
time it took for the recovery to occur would be con-
trolled by the extent of community collapse. However,
the severe ecological degradation [6] and restructuring
of paleocommunities during the Early Triassic were
largely controlled by the deleterious environmental con-
ditions of the time.

The hypothesis that the entire Early Triassic is
afflicted by a preservation gap [16,17,55] is not well-
supported. Indeed, there is a dearth of silicified faunas
from the Lower Triassic and Early Triassic faunas con-
sist mainly of neomorphs and molds [19]. However, a
recent evaluation of Early Triassic environmental and
ecological characteristics indicates that fossil preserva-
tion likely was not significantly decreased during the
Early Triassic. The widespread occurrence of assem-
blages dominated by small fossils (microgastropod bio-
facies [21]), the lack of extensive bioturbation, and peri-
odic increases in alkalinity that built up in Early Triassic
oceans due to bacterial sulfate reduction indicate that
shells typically may not have been preferentially dis-
solved and molds may not have been destroyed in the
early diagenetic environment [19]. Therefore, though
silicification is not extensive in Lower Triassic strata,

the body fossils and molds that are present are useful
and valuable at least for paleoecologic studies, if not
for detailed taxonomic studies. The decrease in ichno-
generic diversity and in the depth and extent of biotur-
bation during the Early Triassic are also excellent prox-
ies for ecological degradation independent of the
fossilization process and falsify the hypothesis that the
taxonomic and ecologic patterns during the Early Tri-
assic are more apparent than real. Furthermore, the taxo-
nomic and ecologic patterns that characterize the Early
Triassic herald the taxonomic and ecologic patterns that
characterize the remainder of the Phanerozoic; these
long-term changes would not have persisted if Early
Triassic patterns were merely the result of a preserva-
tion bias. Short-term structural changes in Early Trias-
sic paleocommunities are not merely artifacts of tapho-
nomic bias as previously suggested [16,17], but are
primary signals of non-actualistic paleoecology during
the aftermath of the end-Permian mass extinction.

The end-Permian mass extinction and its aftermath
are ecologically, as well as taxonomically, significant
events in the history of life. The end-Permian mass
extinction was only one result of deleterious environ-
mental conditions affecting the Late Paleozoic/Early
Mesozoic. Rather than concentrating solely on the end-
Permian mass extinction, future studies, such as paleo-
community and onshore/offshore pattern analyses,
should focus on pre- and post-extinction ecologic pat-
terns to gain a more complete view of the conse-
quences of this environmental stress on evolutionary
history. Examining ecologic as well as taxonomic
parameters will also aid in constraining the cause of
the end-Permian mass extinction and will reveal what
aspects of paleocommunities are resilient to severe envi-
ronmental stress.
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