cryptogamie Algologie 2024-45-4

Morphological and molecular characterization of Goleter sp. (Nostocales, Nostocaceae) isolated from freshwater in Iran

Bahareh NOWRUZI & Adriana Sturion LORENZI

art. 45 (4) — Published on 18 April 2024 www.cryptogåmie.com/algologie PUBLCATIONS SCIENTIFIQUES

DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: GILles BLOCH Président du Muséum national d'Histoire naturelle

RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF: LINE LE GALL Muséum national d'Histoire naturelle

Assistant de rédaction / Assistant editor: Chris LE COQUET-LE ROUX (algo@cryptogamie.com)

MISE EN PAGE / PAGE LAYOUT: Chris LE COQUET-LE ROUX

RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS

Ecoevolutionary dynamics of algae in a changing world

Stacy KRUEGER-HADFIELD

Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States)

Jana KULICHOVA

Department of Botany, Charles University, Prague (Czech Republic)

Cecilia TOTTI

Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

Phylogenetic systematics, species delimitation & genetics of speciation

Sylvain FAUGERON

UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O'Higgins 340, Santiago (Chile)

Marie-Laure GUILLEMIN

Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile)

Diana SARNO

Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy)

Comparative evolutionary genomics of algae

Nicolas BLOUIN

Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN

School of BioSciences, University of Melbourne, Victoria, 3010 (Australia)

Algal physiology & photosynthesis

Janet KÜBLER

California State University Northridge, Department of Biology, California State University, Northridge, CA 91330-8303 (United States)

Prokarvotic algae

Nico SALMASO

IASMA Research and Innovation Centre, Fondazione Mach-Istituto Agrario di S. Michele all'Adige, Limnology and River Ecology, Via E. Mach, 1, 38010 San Michele all'Adige, Trento (Italy)

Vitor VASCONCELOS

Faculdade de Ciências da Universidade do Porto and CIIMAR, Rua do Campo Alegre, s/n, 4169-007 Porto (Portugal)

COUVERTURE / COVER: Extrait de la Figure 1 / Extract of Figure 1

Cryptogamie, Algologie est indexé dans / Cryptogamie, Algologie is indexed in:

- Aquatic Sciences & Fisheries Abstracts Part I.
- Biological Abstracts
- Chemical Abstracts
- Current Contents
- Marine Science Contents Tables (FAO)
- Science Citation Index
- Publications bibliographiques du CNRS (Pascal)

Cryptogamie, Algologie est distribué en version électronique par / Cryptogamie, Algologie is distributed electronically by: - BioOne® (http://www.bioone.org/loi/crya)

Cryptogamie, Algologie est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Cryptogamie, Algologie is a fast track journal published by the Museum Science Press, Paris

Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Geodiversitas, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae, Comptes Rendus Palévol, Cryptogamie sous-sections Bryologie, Mycologie.

Diffusion – Publications scientifiques Muséum national d'Histoire naturelle

CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél.: 33 (0)1 40 79 48 05 / Fax: 33 (0)1 40 79 38 40

diff.pub@mnhn.fr / http://sciencepress.mnhn.fr

© Publications scientifiques du Muséum national d'Histoire naturelle, Paris, 2024 ISSN (imprimé / print): 0181-1568 / ISSN (électronique / electronic): 1776-0984

Morphological and molecular characterization of *Goleter* sp. (Nostocales, Nostocaceae) isolated from freshwater in Iran

Bahareh NOWRUZI

Department of Biotechnology, Science and Research Branch, Islamic Azad University, Daneshgah Blvd, Simon Bolivar Blvd, Tehran (Iran) bahareh.nowruzi@srbiau.ac.ir (corresponding author)

Adriana Sturion LORENZI

Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Distrito Federal (Brazil)

Submitted on 1 August 2023 | Accepted on 12 February 2024 | Published on 18 April 2024

Nowruzi B. & Lorenzi A. S. 2024. — Morphological and molecular characterization of *Goleter* sp. (Nostocales, Nostocaceae) isolated from freshwater in Iran. *Cryptogamie, Algologie* 45 (4): 39-51. https://doi.org/10.5252/crypto-gamie-algologie2024v45a4. http://cryptogamie.com/algologie/45/4

ABSTRACT

To increase the knowledge on diversity of freshwater cyanobacteria, we have characterized a novel filamentous, benthic cyanobacterium isolated from a pond in Golestan province, Iran. The isolate was studied using a polyphasic approach based on morphological and molecular characteristics, including phylogenetic and structural analysis of the 16S rRNA gene sequence and 16S to 23S internal transcribed spacer (ITS), respectively. The overall morphology of the isolate was similar to Nostocalean member's strains with non-tapering filaments and distributed heterocytes. However, the molecular analyses suggested that it was more closely related to the lithobiont and rock-dwelling *Goleter apudmare* Miscoe & J.R.Johansen, which has tapered filaments and basal heterocytes. The 16S rRNA gene phylogenetic analysis, based on bayesian inference and maximum likelihood methods, placed the isolate close to *G. apudmare*. The D1-D1', Box-B and V3 helixes of the isolate's ITS sequence were different when compared to other *Goleter* ITS sequences. Similar to *G. apudmare* HA4356-MV2 (JN385288.1) and *Goleter* sp. CHAB TP201702 (MT488126.1), tRNA genes were absent from the amplified ITS sequence in the studied isolate. These morphological and molecular characteristics differentiate this isolate from all other *Goleter* taxa described so far, which contributes to extend the knowledge on cyanobacterial diversity and occurrence of benthic cyanobacteria in Iranian freshwaters.

KEY WORDS Cyanobacteria, Nostocales, freshwater, temperate climate, polyphasic approach.

RÉSUMÉ

Caractérisation morphologique et moléculaire de Goleter *sp. (Nostocales, Nostocaceae) isolée de l'eau douce en Iran.*

Pour accroître les connaissances sur la diversité des cyanobactéries d'eau douce, nous avons caractérisé une nouvelle cyanobactérie benthique filamenteuse isolée d'un étang de la province du Golestan, en Iran. L'isolat a été étudié en utilisant une approche polyphasique basée sur les caractéristiques morphologiques et moléculaires, comprenant l'analyse phylogénétique et structurelle de la séquence du gène de l'ARNr 16S et de l'espaceur transcrit interne (ITS) 16S à 23S, respectivement. La morphologie globale de l'isolat était similaire à celle des souches membres des Nostocales avec des filaments non effilés et des hétérocytes distribués. Cependant, les analyses moléculaires suggèrent qu'il était plus étroitement lié au lithobionte Goleter apudmare Miscoe & J.R.Johansen vivant dans les roches, qui possède des filaments effilés et des hétérocytes basaux. L'analyse phylogénétique du gène de l'ARNr 16S, basée sur les méthodes d'inférence bayésienne et de vraisemblance maximale, a placé l'isolat à proximité de G. apudmare. Les hélices D1-D1', Box-B et V3 de la séquence ITS de l'isolat étaient différentes par rapport aux autres séquences Goleter ITS. De la même manière que G. apudmare HA4356-MV2 (JN385288.1) et Goleter sp. CHAB TP201702 (MT488126.1), les gènes d'ARNt étaient absents de la séquence ITS amplifiée dans l'isolat étudié. Ces caractéristiques morphologiques et moléculaires différencient cet isolat de tous les autres taxons de Goleter décrits jusqu'à présent, ce qui contribue à étendre les connaissances sur la diversité cyanobactérienne et la présence de cyanobactéries benthiques dans les eaux douces iraniennes.

MOTS CLÉS Cyanobacteria, Nostocales, eau douce, climat tempéré, approche polyphasique.

INTRODUCTION

Cyanobacteria are a group of photosynthetic prokaryotic microorganisms that have long captured the scientists' attention. About 5310 species of cyanobacteria have been hitherto described (Guiry & Guiry 2022) and new species have continually been found, described, and typically named according to established rules. The correct determination of cyanobacteria strains concerns new biotechnological applications as well as ecological studies. There are many situations where it is crucial to recognise close species.

The systematics of the phylum Cyanobacteria is challenging and has undergone several revisions during recent years (Komárek & Anagnostidis 1999; Komárek 2013). Moreover, some morphological characters vary considerably in response to different selective pressures, making species delimitation difficult if only based on morphological criteria.

In addition to morphological and physiological characteristics, molecular methods have been used extensively to identify and differentiate cyanobacterial species. In particular, analysis of the16S rRNA gene sequence and 16S-23S rRNA internal transcribed spacer (ITS) secondary structures have enabled taxonomic resolution of novel species (Genuario *et al.* 2015; Miscoe *et al.* 2016; Rigonato *et al.* 2016; Alvarenga *et al.* 2017; Scotta Hentschke *et al.* 2017; de Alvarenga *et al.* 2018; Saraf *et al.* 2018; Kabirnataj *et al.* 2020; Nowruzi & Shalygin 2021; Nowruzi & Soares 2021).

Here, we describe the isolation and characterization of a novel benthic filamentous cyanobacterium collected from a freshwater pond in Golestan province, Iran. The isolate was described morphologically, analyzed phylogenetically based on the 16S rRNA gene sequence, and also evaluated by analysis of the 16S-23S ITS secondary structure. The combined results contribute to extend the knowledge on cyanobacterial diversity and occurrence of filamentous, lithobiont and rock-dwelling cyanobacteria in Iranian freshwaters.

MATERIAL AND METHODS

ISOLATION AND MORPHOLOGICAL CHARACTERIZATION The cyanobacterial material, from which the isolate was obtained, was collected in June, 2016 from a freshwater system (pond) (36°51'25"N, 54°26'55"E), in Golestan province, Gorgan city, Iran. Biomass was collected from submerged stones, placed into cone-shaped plastic tubes (Falcon[°] conical tubes) and transported to the laboratory for subsequent isolation and identification (Waterbury 2006).

In the laboratory, small sections of the cyanobacterial material were spread onto 1.2% agar-solidified BG-11₀ medium (BG-11 without a nitrogen source) (Rippka *et al.* 1979) and cultivated at $28 \pm 2^{\circ}$ C under an illumination of *c*. 50-55 µmoL photons m⁻²s⁻¹, and a 14:10 h light:dark cycle. The biomass was constantly analyzed under a microscope and successive streaking onto fresh media was performed until a unicyanobacterial colony was obtained. The isolate was temporarily named 121B and maintained in a 250 mL cotton-stoppered Erlenmeyer flask containing liquid BG-11₀ medium at $28 \pm 2^{\circ}$ C with periodic shaking (twice daily), illumination of *c*. 50-55 µmoL photons m⁻²s⁻¹, and a 14:10 h light:dark cycle. Morphological observations (e.g. colony and filament morphologies, vegetative cell, heterocyte and akinete shape and dimensions), set under the provisions of the International Code of Nomenclature for algae, fungi and plants (McNeill *et al.* 2012), were made using an Olympus CX31RTS5 (Olympus, Tokyo, Japan) stereoscope equipped with a QImaging GO-3 digital camera (Teledyne QIMAG-ING, Surrey, British Columbia, Canada) and an Olympus BX43 microscope equipped with manufactured Sc50 digital camera. Cell parameters (i.e., vegetative cell, heterocyte and akinete dimensions) were measured using the DP-SOFT software, and from 50 to 200 measurements were taken for each parameter to describe the trait variability. Identification of the isolate was carried out according to Komárek *et al.* (2014) and Komárek (2016a, b). In addition, studies dealing with the description of *Goleter* species were considered (Komárek & Kováčik 1989; Rajaniemi *et al.* 2005; Turicchia *et al.* 2009; Komárek 2013).

PCR AMPLIFICATION OF THE 16S RRNA gene sequence and 16S-23S internal transcribed spacer (ITS)

Genomic DNA was extracted from a 16-day-old log phase culture using the HiPurA[™] Bacterial Genomic DNA Purification Kit MB505 (HiMedia Lab, Mumbai, India), following the manufacturer's instructions, except for a variation in incubation time in lysis solutions AL (60 minutes) and C1 (20 minutes).

Amplification of the 16S rRNA gene sequence and 16S-23S ITS were carried out separately on the extracted DNA in volumes of 20 µL PCR reaction comprised of 1 X buffer solution (DyNAzyme PCR buffer, Finnzymes, Espoo, Finland), 0.5 µM forward primer (27F or ITS-F), 0.5 µM reverse primer (23S30Ra or ITS-R) (Appendix 1), 0.5 U of Taq polymerase and 10 ng of template DNA. Thermocycling was performed in an iCycler (Bio-Rad, Foster City, CA, United States) (Appendix 1). PCR products were analyzed on 1% agarose gel electrophoresis (SeaPlaque GTG, Cambrex Corp., East Rutherford, NJ, United States) at 100 V, stained with 0.10 µg mL⁻¹ of ethidium bromide (Bio-Rad), and visualized under ultraviolet light using a Molecular Imager Gel Doc XR system (Bio-Rad). A digital gel image was obtained with the image analysis software Quantity One version 4.6.7 (Bio-Rad). The size of PCR products was estimated by comparison with DNA molecular marker $(\lambda/\text{HinfIII} + \lambda x/\text{HaeIII}, \text{Finnzymes}).$

Cloning of fresh PCR products was performed using the TOPO Ta cloning system with the vector 2.1-TOPO (Invitrogen, Carlsbad, United States) according to the manufacturer's instructions. The cloned inserts were bidirectionally sequenced by Sanger sequencing using the BigDye^{*} terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, California, United States) and internal primers (Appendix 1). Each set of sequencing reactions (Phred \geq 20). The sequenced fragments were assembled into contigs using the Bio Edit Sequence Alignment Editor Version 7 (Hall 1999), and only bases of high quality were considered.

The 1996 bp assembled sequence, encompassing the full 16S rRNA gene sequence and 16S-23S internal transcribed spacer (ITS), was deposited in the GenBank (National Center for Biotechnology Information) under the accession number OP422450.

16S RRNA GENE SEQUENCE PHYLOGENETIC ANALYSES

The boundaries of the 16S rRNA gene sequence from the isolated cyanobacterium were determined using barrnap 0.8 (Seemann 2013). The 1490 bp 16S rRNA gene sequence was queried against the GenBank database (National Centre for Biotechnology Information) using BLASTN (MegaBLAST) search (Altschul et al. 1990). The first search was against the standard nucleotide sequence database. The second search was against the 16S rRNA nucleotide sequence database limited to type material. The 16S rRNA phylogenetic tree was constructed using Nostocalean sequences (Appendix 3) aligned with the 16S rRNA sequence from the isolated cyanobacterium using MAFFT version 7 (Katoh & Standley 2013). Goleter apudmare Miscoe & J.R.Johansen (KF417425.1) was used as reference sequence, and *Gloeobacter violaceus* Rippka, J.B. Waterbury & Cohen-Bazire (NR074282.1) as outgroup. A maximum likelihood (ML) phylogenetic tree was inferred from the sequence alignment using IQ-Tree multicore version 2.1.2 (Minh et al. 2020), with the best-fit model selected by ModelFinder (Kalyaanamoorthy et al. 2017) and 10000 ultra-fast bootstrap replicates. The generated tree was displayed with iTOL (Letunic & Bork 2021) and formatted with Adobe Illustrator 26.3.1.

Additionally, *p*-distances between the 16S rRNA gene sequences of the isolate *Goleter* sp. and its closest phylogenetic relatives were calculated using MEGA11 (Tamura *et al.* 2021). This distance is the proportion (*p*) of nucleotide sites at which two sequences compared are different. It is obtained by dividing the number of nucleotide differences by the total number of nucleotides compared.

16S-23S RRNA ITS REGION SECONDARY STRUCTURE ANALYSIS

The secondary structure of the 16S-23S rRNA ITS of the isolated cyanobacterium was characterized according to Johansen *et al.* (2011). The D1-D1' helix, D2, D3, BOX-B, BOX-A, D4 and V3 regions of the 16S-23S ITS were compared to structures of *Goleter apudmare* (JN385289.1, JN385288.1, KF417425.1) and *Goleter* sp. (MT488126.1, MT488260.1, MT488270.1) using the M-fold web server version 2.3 (Zuker 2003), assuming ideal conditions of untangled loop fix and a temperature of 37°C. The resulting structures were downloaded and formatted with Adobe Illustrator 26.3.1.

Repositories

Sequence obtained in this study is deposited in GenBank (National Center for Biotechnology Information), under the accession number OP422450.

ABBREVIATIONS

ITS	internal transcribed spacer;
PCR	polymerase chain reaction;
16S rRNA	small subunit ribosomal RNA.

Characteristic	Goleter sp. (OP422450)	Goleter apudmare (KF417425)
Colony morphology	Densely gelatinous filaments, light green to deep green	Diffuse, light colored, spreading colony, dull grayish blue-green
Filament morphology	Flexuous, bent, slightly coiled	Tapering
Filament structure	Solitary, polar, non-tapering	Heteropolar, tapering, strongly constricted at crosswalls
Branching	Branched	Branched
Sheath	Present on some filaments, colorless	Thin, barely visible, colorless
Cross-walls	Present	Present
Vegetative cell shape	Cylindrical to barrel shaped	Isometric, longer than wide near trichome apex
Vegetative cell dimensions (µm)	5.4×4.2-10.1	3.8-4×2.5-5.5
Vegetative cell granulation	Mostly granular	Homogenous to sparsely granular
Heterocyte shape	Ellipsoidal to cylindrical	Solitary, basal, hemispherical
Heterocyte dimensions (µm)	4-4.5×5.1	2.5-4.4×3.6-4.4
Akinete morphology	Spherical, very rare, solitary, in the middle of filaments or free from filaments	Forming in series in basal portion of trichome, homogenous to coarsely granular
Akinete dimensions (µm)	5.1-7.6×6.5-7.1	3.3-7.5
Akinete granulation	Homogenous to coarsely granular	Homogenous to coarsely granular
Hormogonia	Present	Not present
Necridia	Occasionally found	Not present
Habitat	Lithophytic on stones in freshwater pond, northern Iran	Lithophytic on cave wall, Kauai, Hawaii

TABLE 1. — Morphological comparison of the isolate *Goleter* sp. and its close phylogenetic relative *Goleter apudmare* Miscoe & J.R.Johansen. *Goleter apudmare* characteristics obtained from Miscoe *et al.* (2016).

TABLE 2. - Size (bp) of ITS secondary structures of the isolate Goleter sp. and related species.

	D1-D1'	Spacer+ D2+		tRNAIle	tRNAAla		Post Box-B			
	helix	spacer	D3	gene	gene	Box-B	spacer	Box-A	D4	V 3
Goleter sp. (OP422450)	65	35	4	-	-	27	17	11	8	21
Goleter apudmare HA4356-MV2 (JN385288.1)	54	51	3	_	-	26	17	11	9	-
Goleter apudmare HA4356-MV2 (JN385289.1)	65	38	4	74	73	26	18	11	9	-
Goleter apudmare HA4340-LM2 (KF417425.1)	54	44	4	74	73	26	18	11	8	_
Goleter sp. CHAB TP201702 (MT488126.1)	53	-	-	_	-	26	16	11	9	29
<i>Goleter</i> sp. CHAB TP201702 (MT488260.1)	53	49	4	74	73	26	16	11	9	29
<i>Goleter</i> sp. CHAB TP201823 (MT488270.1)	53	49	4	74	73	26	16	11	9	29

RESULTS

MORPHOLOGICAL ANALYSIS

Macroscopically, the isolate grew attached to stones in fresh water, exhibiting pale green to deep green pigmentation (Fig. 1). The culture grew as a gelatinous biomass, forming a wide range of macroscopic colonies on agar plates (Fig. 1D). Further, cell color changed from pale green to deep green with age. In young cultures, unbranched filaments mostly isopolar and untapered were observed, but with at least some trichomes branching. Hormogonia were formed by dissolution of crosswall connections or by formation of necridia, causing fragmentation in the middle of polar trichomes, or fragmentation at polar trichomes, with few-celled hormogonia arising as result. In older cultures, granular cells with vacuolization becoming apparent in senescence were observed. When the cells tear, granules are released. The gross morphology of the isolate was similar to Nostocalean representatives with nontapering solitary filaments of barrel shaped cells, and dispersed cylindrical heterocytes and akinetes.

However, as the molecular analyses suggested a close relationship between the new isolate and *Goleter* species (see below), a detailed morphological comparison (Table 1) was performed against the type species *Goleter apudmare* (Miscoe *et al.* 2016; Strunecký *et al.* 2023). Surprisingly, the morphology of the isolate differed significantly from that of *G. apudmare* (KF417425). The trichomes of the isolate featured end cells with two corner "spines" and bristles, whereas *G. apudmare* has tapered end cells (Fig. 2A). The cell contents of the isolate were very granular (Fig. 2C), with granules released when

Fig. 1. – A-C, Nostocaceae cyanobacterium in the original sampled site; D, colonies on a Petri dish.

the cells tore. G. apudmare cell contents are homogenous to sparsely granular according to Miscoe et al. (2016). Necridium cells were occasionally found in the main filaments of the isolate (Fig. 2A, E, G) whereas G. apudmare lacks necridium cells. Reproduction in the isolate was observed to occur via uniseriate hormogonia, whereas in G. apudmare reproduction occurs via fragmentation of cells. The trichomes of the isolate tend to aggregate into multiseriate clumps (Fig. 2G). Goleter apudmare trichomes do not aggregate. Akinetes were rarely observed in the isolate, and were solitary, centrally located in, or free from filaments (Fig. 2E). In G. apudmare, akinetes occur in series in the basal portion of trichomes. In the isolate, heterocytes were bone shaped and spherical (Fig. 2G), whereas G. apudmare heterocytes are hemispherical. Finally, monocyte reproductive cells were present in the isolate (Fig. 2G), but are absent in *G. apudmare*.

16S RRNA GENE SEQUENCE ANALYSES

The BLASTN search of the 16S rRNA gene sequence of the isolate against the standard nucleotide sequence database returned 50 sequences with identities ranging from 96.53 to 97.99%. All of which were from the order Nostocales. The top hits (>96.97% identity) were sequences annotated as *Goleter*, *Nodularia* and *Trichormus* genera (Appendix 2). The BLASTN search against the 16S rRNA nucleotide sequence database limited to type material returned 50 sequences with identities ranging from 91.24 to 96.62%, 47 of which were from the order Nostocales. The top hits (>96% identity) included *Atlanticothrix*, *Cyanocohniella* and *Komarekiella* species (Appendix 3).

The ML phylogenetic tree based on the BLASTN search limited to type material (plus the *G. apudmare* reference sequences and other *Goleter* sp. sequences), with the GTR+F+R6 best-fit model applied, is displayed in Figure 3. The tree partitioned

Fig. 2. — Micrographs of the isolate *Goleter* sp. in culture: **A**, older filaments featuring end cells with two corner "spines"; **B**, "spines" absent in young filaments; trichomes appear branched due to the proliferation of hormogonia derived from the main filaments; **C**, granular cell contents; **D**, filament uniseriate, biseriate or multiseriate; **E**, necridium cells occasionally found in the main filaments. Reproduction occurs via uniseriate hormogonia with two corner "spines" and bristles. Akinetes very rare; **F**, long branching filaments with prostrate main axes; **G**, trichomes often aggregate into subspherical multiseriate clumps. Heterocytes bone, shaped and spherical. Monocyte reproductive cells observed. Abbreviations: **aki**, akinete; **biser**, biseriate; **brch**, branching; **clum**, clump; **gran**, granules; **het b**, bone shaped heterocytes; **het s**, spherical shaped heterocytes; **hor**, hormogonium; **mono**, monocyte; **multis**, multiseriate; **nec**, necridium; **non spi**, "spines" absent; **relea**, released granules; **spi**, two corner "spines"; **unise**, uniseriate. Scale bars: 10 µm.

mostly according to assigned genera. The isolate clustered on the same branch as *G. apudmare* (94% ML) with *Aliinostoc* spp. and *Nodularia*, and *Cyanocohniella* and *Anabaena* forming other two sister clades. *P*-distances between the 16S rRNA gene sequences of the isolate *Goleter* sp. and its closest phylogenetic relatives are shown in Appendix 4.

16S-23S ITS SECONDARY STRUCTURE ANALYSIS

The ITS secondary structure of the isolate was compared to that of related *Goleter* strains (five unique sequences) identified

through the 16S rRNA standard BLASTN search (Appendix 2). The D1-D1' helix, D2, D3, Box-B, Box-A, D4 and V3 regions were present in the ITS secondary structure of the isolated strain (Table 2) as described by Johansen *et al.* (2011). The D1-D1' helix of the isolate included a terminal bilateral bulge, a bilateral bulge, three unilateral bulges, and a basal clamp (Fig. 4), and was similar to that of *G. apudmare* (JN385289.1) in terms of length and shape, but significantly different to that of the *Goleter* sp. structures. The D1-D1' side loop of the isolate lacked tRNA genes for Ile and Ala, which were present in most of the

Fig. 3. — Maximum likelihood (ML) phylogenetic tree for the isolate (*Goleter* sp., in **red**) and reference strains, based on 16S rRNA gene sequences (1490 bp). *Gloeobacter violaceus* Rippka, J.B.Waterbury & Cohen-Bazire is the outgroup. Bootstrap values are shown near nodes. Scale indicates phylogenetic distance. GenBank accession numbers are indicated next to species names. For further details on sequences and BLAST results, see Appendix 3. For *p*-distances, see Appendix 4.

Goleter structures (Table 2). ITS sequences for *Goleter* spp., lacking tRNA genes, are not shown (see Table 2 for details). The Box-B helix of the isolate had a terminal bilateral bulge, a bilateral bulge and a basal clamp, and was similar in length and shape to the *G. apudmare* (JN385289.1) and *Goleter* sp. structures. The V3 helix of the isolate consisted of a terminal bilateral bulge, a unilateral bulge, and a basal clamp, and was significantly smaller (-8 nt) than the *Goleter* sp. structures. In *G. apudmare* lacked this region (Fig. 4; Table 2).

DISCUSSION

Nostocales is the largest order of the phylum Cyanobacteria and contains species from diverse aquatic and terrestrial habitats (Komarek *et al.* 2014). While all Nostocalean cyanobacteria are filamentous, extraordinary morphological diversity exists in this order with respect to the presence and position of heterocytes and akinetes, filament branching, cell size and shape and various subcellular characteristics. The development of DNA sequencing technologies over the past few decades has revealed a lack of consistent correspondence between Nostocalean morphotypes and phylotypes, which has led to significant revision of the order and the description of several new taxa (Komarek *et al.* 2014). Considering these revelations, a polyphasic approach should always be undertaken when classifying new species (Komárek 2016a).

In the present study, we isolated and characterized a benthic, filamentous cyanobacterium from a freshwater pond in Golestan Province, Iran. Morphologically, this strain resembled Nostocalean member strains with branching, non-tapering filaments, and dispersed heterocytes and akinetes. In addition, molecular analysis revealed that its closest phylogenetic relative was Goleter apudmare (Fig. 2). Goleter apudmare is a terrestrial tropical species, originally isolated from the roof of a cave in Kauai, Hawaii (Miscoe et al. 2016). While it shares some morphological features with our isolate, it has basal akinetes and heterocytes, and tapering apices. In addition, our isolate differs in morphology from Goleter apudmare (Table 1) by the trichome serration, probably due to residuals of degraded dead cells, and end cells; akinete occurrence (rarely observed in the isolate, and were solitary, centrally located in, or free from filaments); heterocyst shape; filament tapering, and presence of necridia, monocyte reproductive cells and hormogonia. Unlike a monocyte, an akinete is characterized by an enveloped, thick-walled, non-motile, dormant cell formed by filamentous, heterocyst-forming cyanobacteria under the orders Nostocales and Stigonematales, which is resistant mainly to cold and desiccation. Monocytes differ from described reproductive structures including hormogonia and hormocytes (single-celled hormogonia) by the way they are produced and/or released (Berthold et al. 2022). While monocytes are produced and released from attached sessile apical cells through an attenuated

Fig. 4. - Secondary structures of the 16S-23S ITS of the isolate Goleter sp. and related Goleter sequences.

sheath, hormocytes are released after necridia or filament disintegration through an opened sheath, for instance. Moreover, reproduction by monocytes occurs through the binary fission of apical sessile cells where the apex region of the cell separates from the attached cell (Berthold *et al.* 2022).

At the molecular level, the isolate shared > 97% sequence identity (99% coverage) with *Goleter* spp. by BLASTN analysis (Appendix 2). Despite significant habitat, geographical and morphological differences, the isolate and *Goleter apudmare* possess close relationship based on phylogenetic analysis. Results of the16S rRNA phylogenetic tree suggest that the isolate is a close phylogenetic relative of *G. apudmare* (*p*-distance = 0.0236, Fig. 3), belonging to the *Goleter* genus. However, it is sufficiently divergent from *G. apudmare* species, based on the taxonomic threshold (< 98.7% identity) proposed by Yarza *et al.* (2014). Moreover, the cyanobacterium isolate was placed in separate branch, while two *G. apudmare* grouped together (100% ML) in the 16S rRNA phylogenetic tree.

The isolate's 16S-23S rRNA ITS secondary structure was similar to the *G. apudmare* ITS (JN385289.1) with respect to the size and shape of the D1-D1' and Box-B helixes. However, it lacked the tRNA genes for Ile and Ala compared to *G. apudmare* HA4356-MV2 (JN385288.1), while in *G. apudmare* HA4356-MV2 (JN385289.1) lacked the V3 helix (Fig. 4). Like other cyanobacterial species (Iteman *et al.* 2000; Boyer *et al.* 2001; Gugger *et al.* 2005; Finsinger *et al.* 2008), *G. apudmare* and the isolate may possess multiple ribosomal RNA operons, including variants lacking tRNA genes.

Finally, our findings contribute to increase the knowledge on diversity of the filamentous genus *Goleter*, which was previously described as a lithobiont and rock-dwelling genus. In addition, phylogeny of the Nostocaceae isolate will be better investigated in future studies in which the ITS sequence coupled with other molecular markers such as *rbc*L, *cpc*BA-IGS, and *rpo*C1, and if possible phylogenomic studies, will be performed to confirm the isolate's taxonomic position.

Authors' contributions

Bahareh Nowruzi: original concept of paper, original draft preparation, isolation of strain, analysis of molecular data and microscope observation, construction of phylogenetic trees and ITS structures. Adriana Sturion Lorenzi: investigation, data analysis, writing – review and editing.

Conflict of interest

The authors declare that there are no conflicts of interest.

REFERENCES

- ALTSCHUL S. F., GISH W., MILLER W., MYERS E. W. & LIP-MAN D. J. 1990. — Basic local alignment search tool. *Journal of Molecular Biology* 215 (3): 403-410. https://doi.org/10.1016/ S0022-2836(05)80360-2
- ALVARENGA D. O., ANDREOTE A. P. D., BRANCO L. H. Z. & FIORE M. F. 2017. — *Kryptousia macronema* gen. nov., sp. nov.

and *Kryptousia microlepis* sp. nov., nostocalean cyanobacteria isolated from phyllospheres. *International Journal of Systematic and Evolutionary Microbiology* 67 (9): 3301-3309. https://doi.org/10.1099/ijsem.0.002109

- BERTHOLD D. E., WERNER V. R., LEFLER F. W., SIMON I. P. & LAUGHINGHOUSE H. D. 2022. — The novel marine cyanobacterium *Nunduva sanctimaloensis* sp. nov. (Nostocales, Cyanobacteria) from rocky shores and its reproduction through modified monocytes. *Fottea* 22 (2): 192-203. https://doi.org/10.5507/ fot.2021.023
- BOYER S. L., FLECHTNER V. R. & JOHANSEN J. R. 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. *Molecular Biology and Evolution* 18 (6): 1057-1069. https://doi.org/10.1093/oxfordjournals.molbev.a003877
- DE ALVARENGA L. V., VAZ M., GENUARIO D. B., ESTEVES-FERREIRA A. A., ALMEIDA A. V. M., DE CASTRO N. V., LIZIERI C., SOUZA J., SCHAEFER C., NUNES-NESI A. & ARAUJO W. L. 2018. — Extending the ecological distribution of *Desmonostoc* genus: proposal of *Desmonostoc salinum* sp. nov., a novel Cyanobacteria from a saline-alkaline lake. *International Journal of Systematic and Evolutionary Microbiology* 68 (9): 2770-2782. https://doi.org/10.1099/ijsem.0.002878
- FINSINGER K., SCHOLZ I., SERRANO A., MORALES S., URIBE-LORIO L., MORA M., SITTENFELD A., WECKESSER J. & HESS W. R. 2008. — Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica. *Environmental Microbiology* 10 (2): 460-473. https://doi.org/10.1111/j.1462-2920.2007.01467.x
- GENUARIO D. B., VAZ M., HENTSCHKE G. S., SANT'ANNA C. L. & FIORE M. F. 2015. *Halotia* gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. *International Journal of Systematic and Evolutionary Microbiology* 65 (2): 663-675. https://doi.org/10.1099/ijs.0.070078-0
- GKELIS S., RAJANIEMI P., VARDAKA E., MOUSTAKA-GOUNI M., LANARAS T. & SIVONEN K. 2005. — *Limnothrix redekei* (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. *Microbial Ecology* 49 (1): 176-182. https://doi.org/10.1007/s00248-003-2030-7
- GUGGER M., MOLICA R., LE BERRE B., DUFOUR P., BERNARD C. & HUMBERT J. F. 2005. — Genetic diversity of *Cylindrospermopsis* strains (cyanobacteria) isolated from four continents. *Applied* and Environmental Microbiology 71 (2): 1097-1100. https://doi. org/10.1128/AEM.71.2.1097-1100.2005
- GUIRY M. D. & GUIRY G. M. 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from http://www.algaebase.org (accessed on 11 July 2023).
- HALL T. A. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95-98.
- ITEMAN I., RIPPKA R., TANDEAU DE MARSAC N. & HERDMAN M. 2000. — Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. *Microbiology* 146 (6): 1275-1286. https://doi. org/10.1099/00221287-146-6-1275
- JOHANSEN J. R., KOVÁČIK L., CASAMATTA D. A., IKOVÁ K. F. & KAŠTOVSKÝ J. 2011. — Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: *Leptolyngbya corticola* sp. nov. (Pseudanabaenaceae, Cyanobacteria). *Nova Hedwigia* 92: 283-302.
- KABIRNATAJ S., NEMATZADEH G. A., TALEBI A. F., SARAF A., SURADKAR A., TABATABAEI M. & SINGH P. 2020. — Description of novel species of *Aliinostoc*, *Desikacharya* and *Desmonostoc* using a polyphasic approach. *International Journal of Systematic* and Evolutionary Microbiology 70 (5): 3413-3426. https://doi. org/10.1099/ijsem.0.004188

- KALYAANAMOORTHY S., MINH B. Q., WONG T. K. F., VON HAESE-LER A. & JERMIIN L. S. 2017. — ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods* 14 (6): 587-589. https://doi.org/10.1038/nmeth.4285
- KATOH K. & STANDLEY D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30 (4): 772-780. https://doi.org/10.1093/molbev/mst010
- KOMÁREK J. 2013. Cyanoprokaryota. 3. Teil: Heterocytous genera, in GÄRTNER G., KRIENITZ L. & SCHAGERL M. (eds), Süßwasserflora von mitteleuropa. Spektrum Academischer, Verlag, Heidelberg: 1-1130.
- KOMÁREK J. 2016a. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. *European Journal* of *Phycology* 51 (3): 346-353. https://doi.org/10.1080/096702 62.2016.1163738
- KOMÁREK J. 2016b. Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. *Hydrobiologia* 764 (1): 259-270. https://doi.org/10.1007/s10750-015-2242-0
- KOMÁREK J. & ÁNAGNOSTIDIS K. 1999. Cyanoprokaryota. 1. Teil: Chroococcales, *in* ETTL H., GÄRTNER G., HEYNIG G. & MOLLENHAUER D. (eds), *Süsswasserflora von Mitteleuropa*. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, Germany: 1-548.
- KOMÁREK J. & KOVÁČIK L. U. 1989. Trichome structure of four *Aphanizomenon* taxa (Cyanophyceae) from Czechoslovakia, with notes on the taxonomy and delimitation of the genus. *Plant Systematics and Evolution* 164 (1/4): 47-64.
- KOMÁREK J., KASTOVSKY J., MARES J. & JOHANSEN J. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. *Preslia* 86: 295-335.
- LEPERE C., WILMOTTE A. & MEYER B. 2000. Molecular diversity of *Microcystis* strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. *Systematics and Geography of Plants* 70 (2): 275-283. https://doi.org/10.2307/3668646
- LETUNIC I. & BORK P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Research* 49 (W1): W293-W296.
- MCNEILL J., BARRIE F., BUCK W., DEMOULIN V., GREUTER W., HAWKSWORTH D., HERENDEEN P., KNAPP S., MARHOLD K. & PRADO J. 2012. — International code of nomenclature for algae, fungi and plants. Koeltz Scientific Books (Regnum vegetabile; 154), Koenigstein, 240 p.
- MINH B. Q., SCHMIDT H. A., CHERNOMOR O., SCHREMPF D., WOODHAMS M. D., VON HAESELER A. & LANFEAR R. 2020. — IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. *Molecular Biology and Evolution* 37 (5): 1530-1534. https://doi.org/10.1093/molbev/msaa015
- MISCOE L., JOHANSEN J., VACCARINO M., PIETRASIAK N. & SHER-WOOD A. 2016. — Novel cyanobacteria from caves on Kauai, Hawaii. *Bibliotheca Phycologica* 120: 75-152.
- NEILAN B. A., JACOBS D., DEL DOT T., BLACKALL L. L., HAWK-INS P. R., COX P. T. & GOODMAN A. E. 1997. — rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus *Microcystis. International Journal of Systematic and Evolutionary Microbiology* 47 (3): 693-697. https://doi. org/10.1099/00207713-47-3-693
- NOWRUZI B. & SHALYGIN S. 2021. Multiple phylogenies reveal a true taxonomic position of *Dulcicalothrix alborzica* sp. nov. (Nostocales, Cyanobacteria). *Fottea* 21 (2): 235-246. https:// doi.org/10.5507/fot.2021.008

- NOWRUZI B. & SOARES F. 2021. Alborzia kermanshahica gen. nov., sp. nov. (Chroococcales, Cyanobacteria), isolated from paddy fields in Iran. International Journal of Systematic and Evolutionary Microbiology 71 (6). https://doi.org/10.1099/ijsem.0.004828
- NÜBEL U., GARCIA-PICHEL F. & MUYZER G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. *Applied and Environmental Microbiology* 63 (8): 3327-3332. https://doi. org/10.1128/aem.63.8.3327-3332.1997
- RAJANIEMI P., HROUZEK P., KASTOVSKA K., WILLAME R., RANTALA A., HOFFMANN L., KOMAREK J. & SIVONEN K. 2005. — Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 55 (1): 11-26. https://doi.org/10.1099/ijs.0.63276-0
- RIGONATO J., GAMA W. A., ALVARENGA D. O., BRANCO L. H. Z., BRANDINI F. P., GENUARIO D. B. & FIORE M. F. 2016. — Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 66 (8): 2853-2861. https://doi.org/10.1099/ijsem.0.001066
- RIPPKA R., DERUELLES J., WATERBURY J. B., HERDMAN M. & STANIER R. Y. 1979. — Generic assignments, strain histories and properties of pure cultures of cyanobacteria. *Microbiology* 111 (1): 1-61. https://doi.org/https://doi.org/10.1099/00221287-111-1-1
- SARAF A., DAWDA H. G., SURADKAR A., BEHERE I., KOTULKAR M., SHAIKH Z. M., KUMAT A., BATULE P., MISHRA D. & SINGH P. 2018. — Description of two new species of *Aliinostoc* and one new species of *Desmonostoc* from India based on the polyphasic approach and reclassification of *Nostoc punensis* to *Desmonostoc punense* comb. nov. *FEMS Microbiology Letters* 365 (24): https:// doi.org/10.1093/femsle/fny272
- SCOTTA HENTSCHKE G., JOHANSEN R. J., PIETRASIAK N., RIGONATO J., FIORE F. M. & LEITE SANT'ANNA C. 2017. — Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 17 (2): 178-190. https://doi.org/10.5507/fot.2017.002
- SEEMANN T. 2013. barrnap 0.8: rapid ribosomal RNA prediction. Available from https:// github.com/tseemann/barrnap.
- STRUNECKÝ O., IVANOVA Å. P. & MAREŠ J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. *Journal of Phycology* 59 (1): 12-51. https://doi.org/10.1111/jpy.13304
- TAMURA K., STECHER G. & KUMAR S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. *Molecular Biology and Evolution* 38 (7): 3022-3027. https://doi.org/10.1093/molbev/msab120
- TURICCHIA S., VENTURA S., KOMÁRKOVÁ J. & KOMÁREK J. I. 2009. — Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. *Nova Hedwigia* 89: 165-200.
- WATERBURY J. B. 2006. The cyanobacteria isolation, purification and identification. *The Prokaryotes* 4: 1053-1073.
- YARZA P., YILMAZ P., PRUESSE E., GLOCKNER F. O., LUDWIG W., SCHLEIFER K. H., WHITMAN W. B., EUZEBY J., AMANN R. & ROSSELLO-MORA R. 2014. — Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. *Nature Reviews Microbiology* 12 (9): 635-645. https:// doi.org/10.1038/nrmicro3330
- ZUKER M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research* 31 (13): 3406-3415. https://doi.org/10.1093/nar/gkg595

Submitted on 1 August 2023; accepted on 12 February 2024; published on 18 April 2024.

APPENDICES

 $\label{eq:appendix} \text{APPENDIX 1.} - \text{Primers used to clone and sequence the 16S rRNA gene and ITS of the isolate Goleter sp.}$

Primer name	Primer sequence (5'-3')	Purpose/target sequence	Reference
27F1	AGAGTTTGATCCTGGCTCAG	Cloning/sequencing 16S rRNA gene	Neilan <i>et al.</i> 1997
23S30Ra	CTTCGCCTCTGTGTGCCTAGGT	5 1 5 5	Lepère <i>et al.</i> 2000
ITS-F	TGTACACACCGCCCGTC	Cloning/sequencing 16S-23S ITS	Gkelis <i>et al.</i> 2005
ITS-R	CTCTGTGTGCCTAGGTATCC	5 1 5	
M13F	GTAAAACGACGGCCAG	Verification and sequencing of cloned PCR products	TOPO™ TA Clonina™ Kit
M13R	CAGGAAACAGCTATGAC	i in a side i gi i i e three t	5
1494R	TACGGCTACCTTGTTACGAC	Sequencing 16S rRNA gene	Neilan <i>et al.</i> 1997
979F	CGATGCAACGCGAAGAAC		Raianiemi et al. 2005
359F	GGGGAATTTTCCGCAATGGG		Nübel <i>et al.</i> 1997
781R	ATGGGATTAGATACCCCAGTAGTC		Nübel <i>et al.</i> 1997
544R	GCAAGCGTTATCCGGAAT		Rajanjemi et al. 2005
359F	GGGGAATTTTCCGCAATGGG		Nübel et al. 1997
781R	ATGGGATTAGATACCCCAGTAGTC		Nübel et al. 1997
544R	GCAAGCGTTATCCGGAAT		Raianiemi <i>et al.</i> 2005
1092R	AAGTCCCGCAACGAGCGC		Rajaniemi et al. 2005

APPENDIX 2. - BLASTN results for the 16S rRNA gene of the isolate Goleter sp. against the standard nucleotide database.

			Querv				Accession
Scientific name	Max score	Total score	cover	E value	Per. ident	Acc. len	number
Goleter apudmare HA4356-MV2	2556	2556	99%	0	97.84	1812	JN385288.1
Goleter apudmare HA4356-MV2	2555	2555	99%	0	97.84	2025	JN385289.1
Goleter sp. CHAB TP201702.1	2575	2575	99%	0	97.99	1876	MT488126.1
Goleter sp. CHAB TP201821.1	2569	2569	99%	0	97.92	2099	MT488260.1
Goleter sp. CHAB TP201821.1	2564	2564	99%	0	97.85	2077	MT488261.1
Goleter sp. CHAB TP201821.1	2547	2547	99%	0	97.65	2099	MT488262.1
Goleter sp. CHAB TP201823.11	2575	2575	99%	0	97.99	2099	MT488270.1
Goleter sp. CHAB TP201823.11	2575	2575	99%	0	97.99	1878	MT488269.1
Goleter sp. CHAB TP201823.11	2575	2575	99%	0	97.99	1878	MT488268.1
Goleter sp. CHAB TP201823.2	2575	2575	99%	0	97.99	1877	MT488267.1
Goleter sp. CHAB TP201823.2	2569	2569	99%	0	97.92	2098	MT488265.1
Goleter sp. CHAB TP201823.2	2564	2564	99%	0	97.85	1877	MT488266.1
Goleter sp. CHAB TP201823.8	2575	2575	99%	0	97.99	1878	MT488273.1
Goleter sp. CHAB TP201823.8	2569	2569	99%	0	97.92	1878	MT488272.1
Goleter sp. CHAB TP201823.8	2564	2564	99%	Õ	97.85	2099	MT488271.1
Nodularia harvevana BECID29	2447	2447	97%	Õ	97.11	1450	AJ781146.1
Trichormus sp. SBC125	2492	2492	99%	Õ	96.97	2204	MW403967.1
Trichormus sp. SBC124	2492	2492	99%	0	96.97	1886	MW403966 1
Uncultured cyanobacterium	2433	2433	97%	õ	96.97	1475	KP762343 1
Uncultured cyanobacterium	2433	2433	97%	Õ	96.97	1475	KP762336.1
Cvanospira capsulata CC87F	2455	2455	98%	Õ	96.94	1462	FB774775.1
Uncultured cyanobacterium	2429	2429	97%	õ	96.9	1474	KP762338 1
Uncultured cyanobacterium	2422	2422	97%	Õ	96.83	1475	KP762342.1
Uncultured cyanobacterium	2422	2422	97%	Õ	96.83	1475	KP762335.1
Cvanobacterium LITEX B 3002	2418	2418	97%	Õ	96.77	1451	KP762334 1
Uncultured cyanobacterium	2416	2416	97%	õ	96 77	1474	KP762340 1
Uncultured cyanobacterium	2416	2416	97%	õ	96 77	1474	KP762339 1
Cvanospira cansulata 9NAT	2438	2438	98%	õ	96 73	1462	FB774776 1
Cvanospira rippkae NMBCI	2438	2438	98%	õ	96 73	1462	FB774768 1
Atlanticothrix silvestris CENA590	2440	2440	98%	õ	96 73	2042	MW326977 1
Atlanticothrix silvestris CENA576	2440	2440	98%	õ	96 73	2042	MW326974 1
Nodularia spumigena LIHCC 0039	2479	9889	100%	Õ	96.72	5294286	CP020114 1
Incultured cyanobacterium	2418	2418	97%	0	96.7	1475	KP762341 1
Incultured cyanobacterium	2418	2418	97%	0	96.7	1475	KP762337 1
Nodularia sp. E81	2435	2435	98%	0	96.67	1463	ΔV430283 1
Cvanosnira rinnkae CB86E7	2433	2433	98%	0	96.66	1462	FR774774 1
Atlanticothrix silvestris CENA564	2435	2435	98%	0	96.66	2042	MW326073 1
Atlanticothrix silvestris CENA585	2433	2433	98%	0	96.66	2042	MW326976 1
Nodularia harvevana SAG 11 85	2400	2400	08%	0	96.66	1/61	KM010020 1
Nodularia nalveyalia SAC 44.05	2401	1/017	100%	0	96.65	5/62271	CP007203.2
Cvanocobniella sp. SV-1-2-EE	2473	2/33	08%	0	90.00	1/65	MT046565 1
Halatia longianora CENA18/	2400	2400	08%	0	96.6	2026	KC605875 2
Nostocaceae cyanobactorium CCM LIEV020	2429 0107	2429 0107	9070 QQ0/	0	90.0 06.6	2020	MT702010.2
NUSICIALEAE CYANODACIENUM CONFUEVU30	2421	2421	9070	U	90.0	2110	1011/00213.1

Appendix 2. - Continuation.

Scientific name	Max score	Total score	cover	E value	Per. ident	Acc. len	number
Atlanticothrix silvestris CENA579	2429	2429	98%	0	96.59	2042	MW326975.1
Scytonema bohneri SAG 255.80	2425	2425	98%	0	96.59	1461	KM019923.1
Nostoc sp. CHAB TP201728.4	2459	2459	99%	0	96.58	1831	MT488206.1
Nostoc sp. CHAB TP201728.4	2459	2459	99%	0	96.58	2149	MT488205.1
Nodularia sp. CHAB TP201734.3	2459	2459	99%	0	96.57	1828	MT488224.1
Nodularia harveyana Bo53	2459	2459	99%	0	96.57	1564	AJ781143.1
Nostoc sp. ACSSI 329	2427	2427	98%	0	96.53	1466	MT425943.1

APPENDIX 3. - BLASTN results for the 16S rRNA gene of the isolate Goleter sp. against type strains. *, not listed as type strain in GenBank.

							Accession
Scientific name	Max score	Total score	Query cover	E value	Per. ident	Acc. len	number
Goleter apudmare*	2457	2457	99%	0	97.8	2025	JN385289.1
Atlanticothrix silvestris	2350	2350	95%	0	96.6	1414	NR_172568.1
Cyanocohniella crotaloides	2403	2403	98%	0	96.3	1500	NR_176548.1
Cyanocohniella rudolphia	2414	2414	99%	0	96.2	1560	NR 176566.1
Komarekiella globosa	2362	2362	97%	0	96.2	1444	NR 176586.1
Nodularia spumigena	2399	2399	99%	0	95.8	1517	NR 114565.1
Dendronalium phyllosphericum	2276	2276	95%	0	95.7	1412	NR 172569.1
Desmonostoc muscorum	2350	2350	98%	0	95.6	1462	NR 176981.1
Cylindrospermum stagnale PCC 7417	2316	2316	97%	0	95.6	1444	NR 114701.1
Komarekiella atlantica	2372	2372	99%	0	95.6	1479	NR 172689.1
Aliinostoc catenatum	2364	2364	99%	0	95.4	1483	NR 172582.1
Aliinostoc morphoplasticum	2351	2351	99%	õ	95.3	1482	NR 158066 1
Desmonostoc persicum	2331	2331	98%	õ	95.3	1546	NR 172577 1
Anabaena cylindrica PCC 7122	2333	2333	99%	Ő	95.2	1477	NR 102457 1
Constrictifilum karadense	2305	2305	98%	0	95	1468	NR 172623 1
	2320	2320	00%	0	94.9	1/82	NR 172622.1
Knyntousia microlenis	2020	2020	08%	0	04.9 04.8	1460	NR 157070 1
Aliinastaa magnakinatifax	2210	2270	9070	0	94.0	1400	ND 170591 1
Knyptousia macronoma	2207	2201	9070	0	94.7	1471	ND 157090 1
Nextee punctiforme DCC 72102	2232	2232	1000/	0	94.5	1437	ND 0742171
Desmanastas lashanganas	2270	2270	000/	0	94.5	1409	ND 176500 1
	2102	2102	92%	0	94.2	1363	NR_170000.1
Desinonosioc caucasicum	2209	2209	98%	0	94	1437	NR_177034.1
	2202	2202	97%	0	94	1400	NR_1/20/0.1
Desikacharya hostocoldes	2224	2224	98%	0	94	1000	NR_170332.1
	2235	2235	99%	0	93.8	1467	NR_1/03/1.1
	2226	2226	99%	0	93.8	1479	NR_1/2583.1
Cronbergia siamensis	2193	2193	98%	0	93.8	1401	NR_153750.1
	2202	2202	98%	0	93.6	1473	NR_172698.1
Cyanomargarita calcarea	2193	2193	99%	0	93.4	1479	NR_1/2/00.1
Phylionema tangolundensis	2180	2180	99%	0	93.2	1481	NR_176526.1
Nostoc oromo	2169	2169	99%	0	92.9	1489	NR_1/2/03.1
Phylionema ansata	2082	2082	96%	0	92.9	1500	NR_176496.1
Phylionema aviceniicola	2028	2028	95%	0	92.6	1414	NR_148663.1
Symphyonema bifilamentata	2117	2117	99%	0	92.5	1475	NR_1/2624.1
Aliterella antarctica	2115	2115	99%	0	92.4	1483	NR_151904.1
Wilmottia stricta	2093	2093	99%	0	92.2	1482	NR_177020.1
Iphinoe spelaeobios	2034	2034	97%	0	92	1446	NR_11/880.1
Brasilonema angustatum	2071	2071	99%	0	92	1479	NR_125582.1
Nunduva fasciculata	2067	2067	99%	0	91.9	1478	NR_177007.1
Gloeocapsopsis dulcis	2073	2073	99%	0	91.9	1490	NR_172677.2
Kyrtuthrix totonaca	2025	2025	97%	0	91.9	1500	NR_176539.1
Aliterella chasmolithica	2034	2034	98%	0	91.8	1500	NR_176549.1
Symplocastrum torsivum	2032	2032	98%	0	91.8	1463	NR_172658.1
Gloeocapsopsis crepidinum	2061	2061	99%	0	91.8	1483	NR_172660.2
Nunduva biania	2060	2060	99%	0	91.7	1481	NR_177005.1
Potamolinea magna	2058	2058	99%	0	91.7	1485	NR_151862.1
Potamolinea aerugineo-caerulea	2058	2058	99%	0	91.7	1485	NR_151861.1
Aliterella atlantica	2026	2026	98%	0	91.5	1546	NR_177002.1
Pleurocapsa minor	2045	2045	99%	0	91.5	1490	NR_172667.1
Arizonema commune	2030	2030	99%	0	91.3	1491	NR_176554.1
Wilmottia koreana	2019	2019	99%	0	91.2	1488	NR_172594.1

APPENDIX 4. — *P*-distances between the 16S rRNA gene sequences of the isolate *Goleter* sp. and its closest phylogenetic relatives. GenBank accession numbers are shown in **parentheses**.

Sequence 1	Sequence 2	<i>p</i> -distance
<i>Goleter</i> sp. (OP422450, nt 121-1611)	Goleter apudmare (JN385289.1)	0.0236
	Cyanocohniella crotaloides (NR_176548.1)	0.0374
	Cyanocohniella rudolphia (NR_176566.1)	0.0412
	Nodularia spumigena (NR_114565.1)	0.0437
	Aliinostoc catenatum (NR_172582.1)	0.0457
	Aliinostoc morphoplasticum (NR_158066.1)	0.0484
	Aliinostoc magnakinetifex (NR_172581.1)	0.0556

APPENDIX 5. — Total length in base-pairs (385 bp) of the Goleter sp. ITS sequence and location of each motif. Dark blue corresponds to the 16S rRNA sequence.

TAAAAAAGCAGTCAAAAGAGCTAAAAAACAAACAAATTCAAAAACGGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGGCGG TATGCTTAACACATGCAAGTCGAACGGTCTCTTCGGAGATAGTGGGCGGACGGGTGAGTAACGCGTGAGAATCTAGCTTCAG GTTCGGGACAACCACTGGAAACGGTGGCTAATACCGAATGTGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGATGAGCTCGC CCGTCTGATTAGCTAGTTGGTGGGGTAAAAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGC CACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGAATTTTCCGCAATGGGCGAAAGCCTGACG GAGCAATACCGCGTGAGGGAGGAAGGCTCTTGGGTTGTAAACCTCTTTTCTCAAGGAAGAAAAAAAGGCGGTACTTGAG GAATAAGCATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCG TAAAGCGTCCGCAGGTGGCTGTGAAAGTCTGCTGTTAAAGAATGAGGCTCAACCTCATACAAGCAGTGGAAACTACACG GCTAGAGTGCGTTCGGGGTAGAGGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAA GGCGCTCTACTAGGCCGCAACTGACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGC CGTAAACGATGGATACTAGGCGTGGCTTGTATCGACCCGAGCCGTGCCGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAG TACGCACGCAAGTGTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGC GAAGAACCTTACCAAGACTTGACATGTCGCGAATTCCTCTGAAAGGAGGAAGTGCCTTCGGGAACGCGAACACGAGGTG GTGCATGGCTGTCGTCGTCGTCGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAG CATTCAGTTGGGCACTCTAAAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCAGCATGCCCCT TACGTCTTGGGCTACACACGTACTACAATGCTACGGACAAAGGGCAGCTACACAGCGATGTGATGCAAAATCCAAAAAACCG GAATTCGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGAAGCTGGTCACGCCCGAAGTCATTACCCCCAACTTTTCG GAGAGGGGGATGCCTAAGGCAGGACTGGTGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGTGGCTG GATCACCTCCTTTTTAGGGAGACCTACACCCCTCAAAACTCGAAAGCAAAATGCCACTAGAGATTGAGTTGGTCTAAC **CTAGGTC**GGTCGAGTATTGGTAAAAGCTTTCAAAGTATCTCTGGTTCAGTTTATAAATAGTTACAACCAAATTGAGCG GAAAAAAGCAGGCAGACGAATCAGAGTGCTGAATGCGGAGTGCGGAGTGCTGAGTAAAATCAGTGCAAAGAACAAAGTAA **GCAGGACAAAGAAAGTTTGC**AGGTGAAACACCAAATGTATTGTGGTCAAGCTAATAAGGGCTAACGGTTGGATACCTAGGC