Trebusxia maresiae sp. nov. (Trebouxiophyceae, Chlorophyta), a new lichenized species of microalga found in coastal environments

Isaac GARRIDO-BENAVENT, Salvador CHIVA, César D. BORDENAVE, Arantzazu MOLINS & Eva BARRENO
Ecoevolutionary dynamics of algae in a changing world
Stacy KRUEGER-HADFIELD
Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States)

Jana KULICHova
Department of Botany, Charles University, Prague (Czech Republic)

Cecilia TOTTI
Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

Phylogenetic systematics, species delimitation & genetics of speciation
Sylvain FAUGERON
UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile)

Marie-Laure GUILLEMIN
Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile)

Diana SARNO
Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy)

Comparative evolutionary genomics of algae
Nicolas BLOUIN
Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States)

Heroen VERBRUGGEN
School of BioSciences, University of Melbourne, Victoria, 3010 (Australia)

Algal physiology & photosynthesis
Janet KÜBLER
California State University Northridge, Department of Biology, California State University, Northridge, CA 91330-8303 (United States)

Prokaryotic algae
Nico SALMASO
IASMA Research and Innovation Centre, Fondazione Mach-Istituto Agrario di S. Michele all’Adige, Limnology and River Ecology, Via E. Mach, 1, 38010 San Michele all’Adige, Trento (Italy)

Vitor VASCONCELOS
Faculdade de Ciencias da Universidade do Porto and CIIMAR, Rua do Campo Alegre, s/n, 4169-007 Porto (Portugal)

Cryptogamie, Algologie est indexé dans / Cryptogamie, Algologie is indexed in:
- Aquatic Sciences & Fisheries Abstracts Part I.
- Biological Abstracts
- Chemical Abstracts
- Current Contents
- Marine Science Contents Tables (FAO)
- Science Citation Index
- Publications bibliographiques du CNRS (Pascal).

Cryptogamie, Algologie est distribué en version électronique par / Cryptogamie, Algologie is distributed electronically by:
- BioOne® (http://www.bioone.org/loi/crya)
Trebuoxia maresiae sp. nov. (Trebuoxiophyceae, Chlorophyta), a new lichenized species of microalga found in coastal environments

Isaac GARRIDO-BENAVENT
Departament de Botànica i Geologia (Fac. CC. Biológiques)
Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, València (Spain)
isaac.garrido@uv.es (corresponding author)

Salvador CHIVA
Departament de Botànica i Geologia (Fac. CC. Biológiques)
Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, València (Spain)
and University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127, Trieste (Italy)
salvador.chiva@uv.es

César D. BORDENAVE
Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE) — Botànica,
Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, València (Spain)
and University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127, Trieste (Italy)
cesar.bordenave@uv.es

Arantzazu MOLINS
Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE) — Botànica,
Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, València (Spain)
and Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA),
Departament de Biologia-Universitat de les Illes Balears (UIB),
Ctra. Valldemossa Km 7.5, 07122, Palma de Mallorca (Spain)
arantxa.molins@gmail.com

Eva BARRENO
Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE) — Botànica,
Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, València (Spain)
eva.barreno@uv.es

Submitted on 1 September 2021 | Accepted on 1 June 2022 | Published on 15 July 2022

Abstract
Coccoid microalgae of the genus Trebuoxia Puymaly are by far the most prevalent among the various species involved in lichen symbioses. However, their taxonomic knowledge is rather scarce compared to that of lichenized fungi. In the present work, a taxonomic study integrating diverse techniques (phylogenetics, light, confocal and transmission electron microscopies) is carried out to describe Trebuoxia maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. This species widely associates with the red-listed lichenized fungus Seirophora villosa (Ach.) Frödén but also with species of the genus Ramalina Ach., both occurring in coastal environments in the western Mediterranean and the Cape Verdean islands. This microalga is circumscribed to Trebuoxia clade A and is closely related to T. de-
INTRODUCTION

The class Trebouxiophyceae Friedl (Chlorophyta) comprises green algal lineages with contrasting habitat preferences (aquatic or aerophytes) and with diverse morphological complexities, which range from coccolid to elliptic unicellular forms to filamentous and blade- or colony-forming species. The coccolid unicellular species in the genus *Trebouxia* Puymaly (Trebouxiaceae Friedl) are of the utmost significance for terrestrial ecosystems as they engage in mutualistic associations with a plethora of ascomycetes and basidiomycetes (Fungi, Eukarya) (Muggia et al. 2020; Bordenave et al. 2022). The phenotypic result (holobionts) of such cyclical symbioses are lichen thalli (Barreno 2013), which are involved in a number of ecosystem-level processes, including the global cycle of carbon (e.g. Cornelissen et al. 2007; Elbert et al. 2012; Asplund & Wärdle 2017). Lichenization represents a successful lifestyle across evolutionary and ecological scales, with c. 20,000 different lichens known worldwide (Margulis & Barreno 2003; Lücking et al. 2017). In fact, lichens occupy c. 8% of the planet surface, and are able to thrive in inhospitable cold and hot deserts, as well as areas with high saline stress (Nash 2008; Bianchi et al. 2019; Sancho et al. 2019; Raggio et al. 2021). While lichen-forming fungi (mycobionts) are obligate symbionts, microalgae (phyco- or chlorobionts) have also been found free-living (Tschermak-Woess 1978; Bubrick et al. 1984; Yung et al. 2014).

The number of known species of *Trebouxia* is to some extent controversial if one looks at the existing literature and online databases. Guiry & Guiry (2021) reported 40 species names and 26 taxonomically accepted species in 2018, whereas Muggia et al. (2018) mentioned 28 species in their first review, and later updated that figure to 29 (Muggia et al. 2020). Currently, the taxonomy of *Trebouxia* is in need of additional revision. Based on a huge assembly of molecular data and molecular species delimitation analyses, Muggia et al. (2020) demonstrated that the number of formally described *Trebouxia* represents only a small portion of the real existing diversity. Their estimates raised the number of candidate species to 109-113, which represents an approximate four-fold increase from the current number of described species.

Trebouxia species have been traditionally described on the basis of phenotypical characters, the most important represented by differences in cell size and shape, chloroplast lobe patterns, number and morphology of pyrenoids, autospore formation, and zoospore structure (Archibald 1975; Friedl 1989; Ettl & Gärtner 2014). However, the genus has been lately shown to host substantial hidden diversity thanks largely to molecular phylogenetics, but only eight recognized lineages have been formally described as new species in the last two
decades (Beck 2002; Voytekovich & Beck 2016; Škaloud et al. 2018). This is in stark contrast to the hundreds of new taxonomic novelties and rearrangements done in the lichen fungal taxonomy in approximately the same time period (Lücking et al. 2017). Isolating algae from lichen thalli and culturing them, which are necessary steps for cell ultrastructure characterization, are probably the major obstacles for the progress of Trebouxia taxonomy (Molins et al. 2018).

Recently, Garrido-Benavent et al. (2022) studied the genetic diversity of the myco- and phycobionts of the red-listed lichen Seirophora villosa (Ach.) Fröden (Teloschistaceae Zahlbr., Ascomycota), which usually forms epiphytic thalli on several shrubs in Mediterranean coastal dune ecosystems. They found that one involved microalga was the undescribed Trebouxia sp. ‘A46’ (Muggia et al. 2020). In the present study we adhere to the integrative taxonomic approach proposed in previous works (e.g. Molins et al. 2018; Muggia et al. 2018; Škaloud et al. 2018; Muggia et al. 2020; Bordenave et al. 2022) by combining molecular phylogenetics with light, confocal and transmission electron microscopies, both on cultured and in symbiotic state, to describe this microalgae as a new Trebouxia species, thereby updating the taxonomy of this genus.

MATERIAL AND METHODS

TAXON SAMPLING

The list of studied lichen specimens that hosted Trebouxia sp. ‘A46’ was reported in Garrido-Benavent et al. (2022). Briefly, the dataset consisted of 71 thalli of Seirophora villosa and 27 of Ramalina lacera (With.) J.R.Laundon that were collected between 2008-2010 in 14 populations across the western Mediterranean basin, including coastal dune ecosystems in the Iberian and Italian peninsulas, the Balearic Islands and Sardinia. The dataset also included a single Seirophora sp. specimen collected in the Cape Verdean Island of Santiago in 2017.

ISOLATION AND CULTURE OF THE LICHEN PHOTOBIONT

A Seirophora villosa thallus from Es Tienc (Mallorca, Balearic Islands), a locality where all lichen specimens hosted Trebouxia sp. ‘A46’ (Garrido-Benavent et al. 2022), was selected for phycobiont isolation using the method described in Chiva et al. (2021). This method consists of an initial thallus washing step that removes any surface-dwelling, non-symbiotic algae; a dissection step of the thallus upper cortex with a sterile razor blade; and a third step of direct inoculation of tiny clumps of the algal layer on a Bold’s Basal Medium (BBM; Bold 1949; Bischoff & Bold 1963). The media are maintained at 17 °C under 15 µmol/m²/s (PPFD) with a 12/12 hours photoperiod. Afterwards, when the phycobiont colony growth is visible to the naked eye, it is transferred onto liquid BBM and incubated under the same conditions. To obtain single strain algal cultures, algae are streaked on BBM plates and, finally, unialgal colonies are transferred and preserved in liquid and/or solid media.

PCR AMPLIFICATION AND SEQUENCING

Marker amplification by PCR was performed directly from isolated colonies using the fast microalgae identification protocol described by Molins et al. (2018). A portion of the plastidial Rubisco large subunit (rbcL) was amplified using primers a-chrbcL-203-5’-MPN and a-ch-rbcL-991-3’-MPN (Nelsen et al. 2011). The primer pairs nrSSU-1780/ITS4T (Kroken & Taylor 2001; Piercey-Normore & DePriest 2001) and COXIId2/COXIdr (Lindgren et al. 2014) were selected for amplifying the two nuclear ribosomal internal transcribed spacers (nrITS1 and nrITS2) together with the 5.8S nrDNA subunit, and the COX2 locus. PCR conditions followed Muggia et al. (2020). Products were visualized on 2 % agarose gels, purified using the Gel Band Purification Kit (GE Healthcare Life Science, Buckinghamshire, UK), and sequenced with an ABI 3100 Genetic Analyzer using the ABI Big-Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, California). Raw electropherograms were manually checked, trimmed and assembled using SeqmanII v.5,070 (DNastar Inc.). GenBank accession numbers are in Table 1. Data of the plastid-encoded markers 23SU rDNA and psbA of the studied microalgae were obtained in Garrido-Benavent et al. (2022).

SEQUENCE DATASETS CONSTRUCTION, ALIGNMENT AND PHYLOGENETIC ANALYSES

Trebouxia sp. ‘A46’ was phylogenetically placed within Trebouxia clade ‘A’ (arboricola/gigantea group) in Muggia et al. (2020), and more specifically into a subclade including T. aggregata (Archibald) Gärtnert, T. arboricola Puymaly, T. crenulata Archibald, T. decolorans Ahmadjian and T. solaris Voytsekhovich & Beck, among other undescribed species. We therefore compiled our sequence datasets considering only the representatives of that subclade. Because those lacked COX2 data, we only constructed the nrITS and rbcL datasets. Alignments were carried out in Geneious v.9.0.2 using MAFFT v.7.222 (Katoh et al. 2002; Katoh & Standley 2013) and the following parameters: the FET-NS-1 × 1000 algorithm, the 200PAM/k = 2 scoring matrix, a gap open penalty of 1.5 and an offset value of 0.123. A manual editing of the resulting nrITS alignment consisted of trimming alignment ends coding for 18S and 26S ribosomal subunits, as well as replacing gaps at the ends of shorter sequences with “N”, which represents any base. Partitions (i.e., nrITS spacers, 5.8S subunit, and codon positions in rbcL) were adequately annotated. Then, the concatenated two-locus dataset was chosen to infer a maximum likelihood (ML) phylogenetic tree with RAxML-NG (Kozlov et al. 2019) using the Swiss Institute of Bioinformatics website. We selected the following optimal partitioned evolutionary model according to a preliminary analysis with PartitionFinder v.1.1.1 (Lanfear et al. 2012): SYM+Γ (nrITS1+2), JC (5.8S, rbcL-2nd codon position), F81 (rbcL-1st cod. pos.) and HKY+I (rbcL-3rd cod. pos.). Branch lengths were linked and an optimization of topology, branch lengths and model were allowed during the ML tree search. Bootstrapping consisted of a fixed number of replicates (100). Additionally, a phylogenetic reconstruction...
TABLE 1. — Details of the Trebouxia Puymaly collections used in this study. Species codes starting with the letter “A” are indicated for cross-reference with the study of Muggia et al. [2020].

<table>
<thead>
<tr>
<th>Trebouxia species</th>
<th>Code</th>
<th>Voucher / Culture collection</th>
<th>nrITS</th>
<th>rbcL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. aggregata</td>
<td>A13</td>
<td>UTEX-180</td>
<td>–</td>
<td>AJ969643</td>
</tr>
<tr>
<td>T. arboricola</td>
<td>SAG-219</td>
<td>–</td>
<td>Z68705</td>
<td>AM158960</td>
</tr>
<tr>
<td>T. crenulata</td>
<td>AV020</td>
<td>–</td>
<td>KJ754304</td>
<td>KJ091733</td>
</tr>
<tr>
<td>T. decolorans</td>
<td>A36</td>
<td>L1184</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. maresiae sp.</td>
<td>A40</td>
<td>P10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. solaris</td>
<td>A48</td>
<td>TSV1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. aggregata</td>
<td>A35</td>
<td>ASUV 142 (Type)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. maresiae sp.</td>
<td>A37</td>
<td>L1107</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. maresiae sp.</td>
<td>A50</td>
<td>L1382</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. maresiae sp.</td>
<td>A51</td>
<td>P400</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T. maresiae sp.</td>
<td>A24</td>
<td>4088</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

using the same dataset and partitioned evolutionary model was conducted with the program MrBayes v.3.2.7 that operates under a Bayesian inference context (Ronquist et al. 2012). The analysis considered two parallel, simultaneous four-chain runs executed over 5×10^7 generations starting with a random tree, and sampling after every 500th step; the first 25% of data was discarded as burn-in, and the 50% majority-rule consensus tree, and corresponding posterior probabilities (PP), were calculated from the remaining trees. Chain convergence was assessed by ensuring that values of the average standard deviation of split frequencies (ASDSF) dropped below 0.005, and values of the potential scale reduction factor (PSRF) approached 1.00. Tree nodes with bootstrap support (BS) values equal or higher than 70%, 50% and 100% for no less than 20–30 minutes at each step. The fixed and dehydrated samples were embedded in Spurr’s resin according to the manufacturer’s instructions (http://www.emsdiasum.com/microscopy/technical/datasheet/14300.aspx). Sections of 90 nm were cut with a diamond knife (DIATOME Ultra 45°) using a Reichert Ultracut E ultramicrotome, later mounted on oval hole copper grids coated with formvar and post-stained with 2% (w/v) aqueous uranyl acetate and 2% lead citrate, using the “SynapTek Grid Staining Kit” (http://www.emsdiasum.com/microscopy/technical/datasheet/7175.aspx). Finally, sections of the microalgae in cultured and symbiotic states were observed with a Hitachi HT7800 (120 kV) electron microscope fitted with a high-speed CMOS camera (EMSI S XAROSA). DIC and TEM examinations were carried out at ICBiBE and SCSIE microscopy services of the University of Valencia.

LIGHT AND TRANSMISSION ELECTRON MICROSCOPY
A Nikon Eclipse E-800 microscope equipped with a Nikon DS-Ri1 camera was employed to observe and take microphotographs of the microalgae of the Balearic Seirophora villosa specimen using differential interference contrast (LM-DIC). Transmission electron microscopy (TEM) examinations were performed on a portion of the thallus mentioned above, as well as on microalgae growing on axenic culture. Algal cells were fixed in 2% Karnovsky fixative for 12 hours at 4° C and washed three times for 15 minutes with 0.01 M PBS (pH 7.4), then post-fixed with 2% OsO₄ in 0.01 M PBS (pH 7.4) for 2 hours at room temperature. Afterwards, they were washed three times in 0.01 M PBS (pH 7.4) for 15 minutes and then dehydrated at room temperature in a graded series of ethanol solutions, starting at 50% and increasing to 70%, 95% and 100% for no less than 20–30 minutes at each step. The fixed and dehydrated samples were embedded in Spurr’s resin according to the manufacturer’s instructions (https://www.emsdiasum.com/microscopy/technical/datasheet/14300.aspx). Sections of 90 nm were cut with a diamond knife (DIATOME Ultra 45°) using a Reichert Ultracut E ultramicrotome, later mounted on oval hole copper grids coated with formvar and post-stained with 2% (w/v) aqueous uranyl acetate and 2% lead citrate, using the “SynapTek Grid Staining Kit” (http://www.emsdiasum.com/microscopy/technical/datasheet/7175.aspx). Finally, sections of the microalgae in cultured and symbiotic states were observed with a Hitachi HT7800 (120 kV) electron microscope fitted with a high-speed CMOS camera (EMSI S XAROSA). DIC and TEM examinations were carried out at ICBiBE and SCSIE microscopy services of the University of Valencia.

LASER SCANNING CONFOCAL MICROSCOPY (LSCM)
The 3-dimensional chloroplast morphology was observed by chlorophyll autofluorescence using an Olympus FLUOVIEW FV1000 confocal laser scanning microscope under a 405 nm excitation laser. Fluorescence emitted from 650 to 750 nm was collected to observe chlorophyll autofluorescence. A series of images were captured with a separation of 0.4 µm. The image stack was preprocessed to remove noise and then analyzed with the Fiji distribution of ImageJ, using the z-projection and the volume viewer tools (Schindelin et al. 2012; Rueden et al. 2017).
RESULTS

ALIGNMENT STATISTICS AND PHYLOGENETIC ANALYSES

The nrITS, 5.8S and rbcL datasets summed up to 23, 23 and 13 sequences, and had a length of 557, 155 and 1150 bp, respectively. The number of variable sites (informative sites in parentheses) in the corresponding alignments were 62 (38), 2 (1), and 16 (15). The ML analysis in RAxML-NG estimated a topology with a final LogLikelihood of -4105.9893. The MrBayes analysis reached an ASDSF value of 0.005 after 1.92 × 106 generations, and Estimated Sample Sizes (EESs) were well above 200 for all parameters. Because the ML and MrBayes topologies showed no supported conflicts, the topology inferred with MrBayes is presented in Figure 1.

It revealed Trebouxia sp. ‘A46’ close to T. decolorans and another undescribed species (Trebouxia sp. ‘A40’), although the group containing all three Trebouxia lacked nodal support. Trebouxia sp. ‘A48’ was closely related to all previous three species but again without nodal support. These taxa together with T. solaris and four additional undescribed taxa formed a well-supported clade (PP = 1, BS = 100%). At the nucleotide level, the three specimens of Trebouxia sp. ‘A46’ differed just by the length of a repeated thymine in the nrITS1 region, two times in the specimen TSV1 (FJ792797), and three in the other two specimens (ASUV 142, P280).

MORPHOLOGY

Isolated microalgae were morphologically characterized by LMDIC, TEM and LSCM after 21 days of growth on solid BBM. Algal cells were usually spherical, and their diameter ranged from 6 µm, in young cells, to 11 µm when mature (n = 40; Fig. 2B-D, H). Mature cells showed a single central chloroplast, which occupied most of the cell volume (Fig. 2C, I-J), and displayed a crenulate morphology with branched and elongated, ‘tree-like’ lobes projected towards the cell wall (Fig. 2I-K). One central pyrenoid of the crenulata-type sensu Bordenave et al. (2022) was visible in mature cells (Fig. 2B-C, H); this type of pyrenoid is characterized by showing long branched tubules meandering through the pyrenoid matrix with a matrix thicker than the tubules (Fig. 3); occasionally, secondary pyrenoids accompanied the central one (Fig. 2B, K). Pyrenoglobuli were always present in moderate number inside the pyrenoid matrix next to the tubules (Fig. 3). Some cells containing two chloroplasts were also observed (Fig. 2E). Chloroplasts in old cells show an irregular and more unorganized structure with unstacked thylakoid lamellae around the pyrenoid (Fig. 3B, C), sometimes showing starch granules (Fig. 3C). The cytoplasm of old cells contained carotenoids (Fig. 2D). Furthermore, microalgal cells showed a nucleus located laterally between the chloroplast lobes (Fig. 3D).

The bilayer cell wall was 0.21-0.43 µm wide (Fig. 3A-E). Asexual reproduction by means of autospores (4-32) was observed (Fig. 2F-H, I); autosporangia were spherical and sometimes deformed by the growing autospores. Zoospores were not observed. Sexual reproduction was not observed.

When lichenized, cells of this microalgae varied morphologically compared to those grown in culture. Thus, their shape was mostly oval and in general between 8-9 µm in diameter (Fig. 3D-E). The periphery of the pyrenoid also showed a slight deviation from the common crenulata-type. Therefore, this hybrid pyrenoid, described here as maresiae-type, is characterized by showing two distinct regions: a central region with long branched tubules meandering through the pyrenoid matrix, with a matrix thicker than the tubules, and with pyrenoglobules present inside the pyrenoid matrix next to the tubules, resembling the crenulata-type pyrenoid; and a peripheral region characterized by short-branched tubules perforating the pyrenoid matrix, with tubules as thick as the matrix, and with pyrenoglobules at the margins of the pyrenoid, resembling the gigantea-type pyrenoid (arrowheads in Fig. 3D-F). Old mature cells were larger in size (13-15 µm), rather spherical, their cell wall thicker (0.65-0.85 µm).

A summary of the similarities and differences in cell and chloroplast characters between the new species and closely related ones is shown in Table 2. According to Honegger (1986), the type of fungal-algal interaction corresponded mostly to wall-to-wall appositions through the formation of appressoria (Fig. 3E).

Family TREBOUIXIAEAE Friedl
Genus Trebouxia Puymaly

Trebouxia maresiae Garrido-Benavent, Chiva & Barreno, sp. nov.
(Figs 1-3)

Trebouxia maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. shows crenulate chloroplasts that bear a crenulata-type pyrenoid when cells are in culture, whereas in the lichenized state it acquires a hybrid structure (maresiae-type), characterized by the periphery of the pyrenoid being rather gigantea-type, with thylakoid membranes forming short, branched tubules. These traits distinguish the new species from T. decolorans, which has deeply lobed chloroplasts with a decolorans-type pyrenoid. The two species also differ by the relatively high number of nucleotide differences in their nrITS DNA sequences. Vegetative cells of T. maresiae sp. nov. tend to be smaller in diameter (< 15 µm) than those of other species in Trebouxia clade A like T. decolorans and T. solaris.

HOLOTYPE. — Spain. Balearic Islands, Mallorca, Es Trenc, phycobiont of Seirophora villosa (Ach.) Frödén collected on branches of Juniperus phoenicea subsp. turbinata (Guss.) Nyman in coastal dunes, 39°20’40.71"N, 2°59’8.24"E, 3 m a.s.l., 07.VIII.2008, leg. G. Salvà. The lichen specimen was deposited in the herbarium of the University of Valencia (VAL-Lich) with the following code: VAL-Lich 31798.

TYPE STRAIN. — Deposited at the Symbiotic Algal collection from the University of Valencia (ASUV), as item type ASUV 142.

REFERENCE STRAINS. — ASUV 142 and ACOI 3420, deposited at the Coimbra Collection of Algae (ACOI), University of Coimbra.

GENBANK ACCESSION NUMBERS. — MZ724411 (nrITS), MZ687825 (rbcL) and MZ687826 (COX2).

ETYMOLOGY. — According to the Canarian Academy of Language, the term “maresiae”, from which the specific epithet “maresiae” derives, means “air laden with marine humidity in areas close to the...
Fig. 1. — Phylogram showing the placement of the new species in a subclade of *Trebouxia* Puymaly clade *A sensu* Muggia et al. (2020). The phylogeny was built with MrBayes based on a three-locus dataset (nrITS, 5.8S and *rbcL*). For reference, green- and orange-filled boxes on the right of each tip indicate the species code of each *Trebouxia* species following Muggia et al. (2020). To the right, the voucher or culture collection code, as well as the name of the species, if any, are provided. Posterior Probabilities (PP) and bootstrap support values (BS, RAxML-NG analysis) are represented on branches leading to nodes on the left and right, respectively. Branches in **bold** had a significant statistical support (PP ≥ 0.95; BS ≥ 70 %).
A new species of lichenized *Trebouxia* Puymaly

Fig. 2. — Habitat and morphology of *Trebouxia maresiae* Garrido-Benavent, Chiva & Barreno, sp. nov.: **A**, a thallus of the lichen *Seirophora villosa* (Ach.) Frödén from Es Trenc (Mallorca) with which this microalga associates; orange discs are apothecia produced by the lichen fungus to reproduce sexually; **B-H**, light microscopy photographs showing the gross morphology of vegetative cells and autosporangia; **B, H**, young and mature cells; **C**, central, crenulate chloroplast with a single pyrenoid; **D**, old cell with carotenoids in the cytoplasm; **E-G**, development of autosporangia and autospores; **I-K**, reconstruction of chloroplasts by LSCM; **K**, crenulate chloroplast with three pyrenoids (white arrowheads); **L**, reconstructed chloroplast of autospores within an autosporangium. Scale bars: 10 µm.
Fig. 3. — Ultrastructure of Trebouxia maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. by TEM: A, B, cultured cells; C-F, cells within lichen thallus; F, detail of a pyrenoid. **White arrowheads** in D, E and F indicate the tubules in pyrenoid periphery that are more similar to those which characterize the gigantea-type pyrenoid. Abbreviations: Chl, chloroplast; CW, cell wall; Pg, pyrenoglobuli; Py, pyrenoid; Tu, tubules; Nu, nucleus; s, starch granules. Scale bars: 2 µm.
seashore”. Therefore, this term refers to the particular habitat where the lichen phycobiont lives, in coastal sea-shore environments.

ECOLOGY. — In association with lichen-forming fungi of the genera Seirophora Poelt, Ramalina Ach. (this work), and Xanthoria parietina (L.) Th. Fr. (isolate no. P-280-II-a-Sc; Nyati et al. 2014).

DISTRIBUTION. — Currently, the known geographic distribution of the new alga includes the Mediterranean basin and the Cape Verdean Island of Santiago (this study; Nyati et al. 2014; Garrido-Benavent et al. 2022).

DESCRIPTION

Cells are mostly unicellular, rarely in tetrads and octads. Vegetative mature cells usually spherical, rarely oval, 7-11 (15) μm diam. Cell wall is usually thin and arranged in a bilayer. Chloroplast central, dissected into crenulately lobes with several tree-like lobes elongated at their ends. Some cells containing two chloroplasts may be also observed. The chloroplast usually contains a single pyrenoid of the crenulata-type with wide, branched tubules of curved profile, often crossing the entire pyrenoid. In symbiosis, however, the pyrenoid shows a hybrid structure (maresiae-type), characterized by displaying two discrete regions that can be each clearly assigned to different pyrenoid types; here, the pyrenoid periphery is more similar to the gigantea-type. Secondary pyrenoids may be present. Pyrenoglobuli present in the closest parts periphery is more similar to the gigantea-type. Secondary pyrenoid shows a hybrid structure (maresiae-type), whereas the chloroplast stroma. The cytoplasm of old cells is sometimes yellowish, probably due to the presence carotenoid pigments, and vacuolated. Asexual reproduction involves the formation of autospores. Autosporangia (10-11 μm diam.) usually contain 4-16 (32) autospores. Sexual reproduction was not observed.

DISCUSSION

The described species Trebouxia maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. has been found in association with the fruiticose-forming lichen genera Seirophora (Teloschistaceae) and Ramalina (Ramalinaaceae) across the western Mediterranean area, i.e., the Iberian and Italian peninsulas, Sardinia and the Balearic Islands. Previously, Nyati et al. (2014) revealed this alga in symbiosis with the very common teloschistacean, foliose lichen Xanthoria parietina (L.) Beltr. in Mallorca (Balearic Islands). The phycobiont of an epiphytic Seirophora sp. from Cape Verde found at c. 900 m of altitude is also included in the concept of T. maresiae Garrido-Benavent, Chiva & Barreno, sp. nov., although it showed a slight genetic differentiation (Garrido-Benavent et al. 2022). Taken together, these data allow two predictions to be made that will, however, require additional research: 1) the global distribution of this micro-alga extends out of the Mediterranean Basin and over the Macaronesian Region; and 2) the microalga is well adapted to environments with a persistent marine influence that are characterized by displaying high salt concentration and rapid desiccation-rehydration cycles (Le Devehat et al. 2014).

The proximity of T. maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. to T. decolorans may be summarized in three items. First, our two-loci phylogenetic reconstruction revealed a close but not statistically supported relationship between them, and showed their membership to Trebouxia clade A (Beck 2002; Helms 2003), which currently includes most undescribed Trebouxia species (Muggia et al. 2020). Overall, the species shows a pattern of intraspecific variation across its geographic distribution (Garrido-Benavent et al. 2022) in a similar way to the genetic variation observed in T. decolorans (Werth & Sork 2010; Dal Grande et al. 2014; Catalá et al. 2016). Second, both species use to associate with lichen fungi, as well as to other related species, whereas T. maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. shows crenulate chloroplasts that bear a crenulata-type (in culture) or maresiae-type (in symbiosis) pyrenoid. A formal description of the hybrid pyrenoid of the new species has been made in the results section of this paper. Furthermore, vegetative cells of the new species tend to be smaller in diameter when mature compared to T. decolorans as well as to other related species, such as T. solars.

In conclusion, T. maresiae Garrido-Benavent, Chiva & Barreno, sp. nov. stands out as a study model for intraspecies modification of the pyrenoid as well as for its ability to thrive in high salt concentration environments such as coastal dune systems.

Table 2.

<table>
<thead>
<tr>
<th>Trebouxia species</th>
<th>T. aggregata</th>
<th>T. arboricola</th>
<th>T. crenulata</th>
<th>T. decolorans</th>
<th>T. maresiae sp. nov.</th>
<th>T. solars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape and size (diameter) of mature, vegetative cells</td>
<td>Spherical, 8-16 μm</td>
<td>Spherical, 13-15 μm</td>
<td>Spherical, 5-18 μm</td>
<td>Spherical, 19-25.5 (30) μm</td>
<td>Spherical, 7-11 (15) μm</td>
<td>Spherical, 15-20 (22) μm</td>
</tr>
<tr>
<td>Chloroplast morphology</td>
<td>Crenulate, with slightly branched lobes</td>
<td>Crenulate, with slightly branched lobes</td>
<td>Crenulate, with tree-like branched lobes</td>
<td>Deeply lobed</td>
<td>Crenulate, with tree-like branched lobes</td>
<td>Crenulate</td>
</tr>
<tr>
<td>Pyrenoid number and type</td>
<td>Single, gigantea-type pyrenoid</td>
<td>Single, gigantea-type</td>
<td>Single, crenulata-type</td>
<td>Multiple, decolorans-type</td>
<td>Single, maresiae-type</td>
<td>Single pyrenoid, type not assessed</td>
</tr>
</tbody>
</table>
Acknowledgements

We gratefully acknowledge Sonia Raver (Università degli Studi di Palermo), Renato Benesperi (University of Florence) and Guillermo Salvà (Mallorca) for collecting some lichen populations. This project received funding from the Spanish Ministry of Economy and Competitiveness (MINECO, CGL2012-40058-C02-01 to EB) and Generalitat Valenciana (GVA, PROMETEO/2013/021; PROMETEO/2021/005 to EB). SC also acknowledges the Spanish Ministry of University for the grant Next generation EU (MS21-058). Steve Leavitt (Brigham Young University, United States) and an anonymous reviewer are thanked for their useful comments on the earlier version of the manuscript.

REFERENCES

