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ABSTRACT

Disease infections caused by invasive fungi and bacteria, are some of the major causes of agricultural
losses and food contamination. Human pathogenic infections are diminishing the quality of life,
and in severe cases, they can trigger morbidity or even mortality. In the agricultural field, preventive
treatments should be provided to control plant diseases, while in the healthcare system, for sup-
pressing human pathogens infections, curative measures can also be applied, but with enormous
costs in many parts of the world. To diminish these shortcomings, three Trichoderma spp. strains
were screened in this study for antimicrobial and antibiofilm activities. The antifungal effect of these
strains was evaluated against eight common plant pathogenic fungi: Alternaria sp. Nees, Botrytis ci-
nerea Pers., Fusarium culmorum (Wm.G.Sm.) Sacc., £ graminearum Schwabe, F oxysporum Schltdl.,
E proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg, Macrophomina phaseolina (Tassi) Goid.
and Sclerotinia sclerotiorum (Lib.) de Bary. Tested Trichoderma spp. strains reduced the pathogenic
growth with at least 50% inhibition; however, they were most effective against B. cinerea, with up to
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INTRODUCTION

92.1 £ 2.0% inhibition. The antibacterial activity of the crude extract obtained from liquid cultures
of tested Trichoderma spp. strains was also screened against six opportunistic human pathogens and
food contaminants: Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bilz, Escherichia
coli (Migula) Castellani & Chalmers, Listeria monocytogenes (Murray et al.) Pirie, Pseudomonas aerugi-
nosa (Schroeter) Migula, Salmonella typhimurium (Loefler) Castellani & Chalmers and Staphylococcus
aureus Rosenbach. Antibacterial activity was determined by disc diffusion assay, and tested Trichoder-
ma spp. strains revealed particularly high inhibitory activity against gram positive bacteria. Moreover,
the antibiofilm activity of these three biocontrol strains was also screened by XTT Assay kit. Turkish
Trichoderma sp. $4 strain showed significant inhibitory activity against the tested pathogens.

RESUME

Activité biologique de certaines souches roumaines et turques de Trichoderma Pers.

Les infections causées par des champignons et des bactéries envahissants comptent parmi les princi-
pales causes de pertes agricoles et de contamination des aliments. Les infections fongiques humaines
diminuent la qualité de vie et, dans les cas graves, elles peuvent entrainer une morbidité, voire une
mortalité. Dans le domaine agricole, des traitements préventifs doivent étre fournis pour contréler les
maladies des plantes, tandis que dans le systeme de santé, pour supprimer les infections par des agents
pathogenes humains, des mesures curatives peuvent également étre appliquées, mais avec des colits
importants dans n’importe quelle partie du monde. Pour pallier ces carences, trois souches de Zricho-
derma spp. ont été étudiées pour leurs activités antimicrobiennes et antibiofilm. Leffet antifongique
de ces souches a été évalué contre huit champignons phytopathogénes communs: Alrernaria sp. Nees,
Botrytis cinerea Pers., Fusarium culmorum (Wm.G.Sm.) Sacc., E graminearum Schwabe, E oxysporum
Schldl., E proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg, Macrophomina phaseolina
(Tassi) Goid. et Sclerotinia sclerotiorum (Lib.) de Bary. Les souches testées de Trichoderma spp. ont
réduit la croissance des pathogenes d’au moins 50 %, et elles ont été le plus efficace contre B. cinerea,
avec jusqu'a 92,1 + 2,0 % d’inhibition. Lactivité antibactérienne de I'extrait brut de cultures liquides
du Trichoderma spp. a été aussi examinée contre six pathogénes humains opportunistes et contaminants
alimentaires: Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bilz, Escherichia coli
(Migula) Castellani & Chalmers, Listeria monocytogenes (Murray et al.) Pitie, Pseudomonas aeruginosa
(Schroeter) Migula, Salmonella typhimurium (LoefHer) Castellani & Chalmers et Staphylococcus anreus
Rosenbach. Lactivité antibactérienne a été déterminée par la méthode du disque de diffusion. Les
souches testées de Trichoderma spp. se sont révélé avoir une activité inhibitrice particulierement élevée
contre les bactéries Gram positives. De plus, I'activité antibiofilm de ces trois souches de biocontrdle
a également été examinée par le kit XTT Assay. La souche turque Trichoderma sp. $4 a montré une
activité inhibitrice significative contre les agents pathogenes testés.

strains remain associated with plants roots, competing soil-
borne phytopathogens. Other Trichoderma spp. strains can

Trichoderma Pers. (Hypocreales, Ascomycota) is a genus of fila-
mentous fungi that have a symbiotic relationship with plants, and
can also grow as saprobes (Ferreira & Musumeci 2021). These
fungi are found in a variety of habitats, including soil, water,
decaying wood, agricultural areas, plants, air, and dust (Bai ez /.
2023). The genus is comprised of around 466 different species,
identified based on their morphological features. Zrichoderma
species are well known for their beneficial properties such as their
ability to produce enzymes for commercial use, promote plant
growth, and control plant diseases (Waghunde e 2/. 2016). As
a result, they show great potential for use in various industries,
agriculture, and medicine. One of the advantages of using Zricho-
derma species is their safety, as they are avirulent and pose no
threat to humans or plants (Bai ez a/. 2023; Zhang ez al. 2021).

Many Trichoderma species can create beneficial associa-
tions with plants (Tseng ez al. 2020). Most Trichoderma spp.
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also grow as endophytes, colonizing the internal root tissue,
intercellular, up to the second or third cells layer (Dutta ez 4.
2023). Such strains can prime the plant response to various
detrimental factors (Tseng er al. 2020), protecting plants
against biotic and abiotic stress (Irshad ez 2/ 2023). They
produce secondary metabolites that are highly beneficial to
the plants (Contreras-Cornejo ez al. 2016). These metabolites
influence Trichoderma spp. interactions with other competing
microorganisms, and stimulate certain plant physiological
responses, by triggering gene expression in their plant hosts
(Bailey ez al. 2006). Endophytic Trichoderma spp. also produce
phytohormones that enhance the uptake of nitrogen fertiliz-
ers, and bioactive secondary metabolites that inhibit a wide
range of pathogens, thus increasing plant protection against
various diseases (Tyskiewicz ez al. 2022). They also help plants
to adapt to environmental stressors such as drought, heavy
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metal toxicity, low pH, and high salinity, and to produce more
photosynthetic products (Cummings e# a/. 2016).

Almost 200 secondary metabolites were discovered in
Trichoderma spp. These metabolites are classified based on
their chemical structures, which include peptaibols, terpe-
noids, pyrones, and polyketides (Bai ez /. 2023). There is an
increasing evidence highlighting these secondary metabolites
for their critical role in promoting the beneficial effects of
Trichoderma spp. on both crop production and human health
(Zhang et al. 2021).

Trichoderma spp. terpenoids have diverse structures, with
many containing different types of diterpenes and sesquiter-
penes. These compounds exhibit various biological activities,
including antimicrobial properties (Leylaie & Zafari 2018),
inhibition of marine plankton species (Zou et /. 2021), and
cytotoxicity (Abd El-Rahman ezal. 2014). Given their numer-
ous bioactive secondary metabolites and beneficial effects on
plant growth, Trichoderma species are regarded as crucial fungal
agents for the development of eco-friendly agrochemicals and
drugs (Bai ez al. 2023).

Synthetic fungicides are commonly used in agriculture
and forestry but their unrestricted use has led to water and
soil contamination with pesticide residues, prompting the
search for natural alternatives that avoid harming the envi-
ronment and minimizing risks to human and animal health.
Many Trichoderma species found in the soil, particularly
in the rhizosphere, can act as avirulent plant symbionts,
with antagonistic and hyperparasitic effects against various
phytopathogens. Such symbiotic fungi are able to protect
plants from diseases (Tozlu ez al. 2018). The biocontrol
properties of Trichoderma spp. fungi rely on both direct
and indirect mechanisms. Direct mechanisms include the
production of lytic enzymes and active metabolites that
suppress pathogens’ growth, as well as mycoparasitism,
while indirect mechanisms involve microbial competition
for nutrients and space, induction of plant defense response,
and stimulation of plant growth promotion. This makes
Trichoderma spp. a promising source for natural alterna-
tives to synthetic pesticides for agriculture and forestry
(Baazeem et al. 2021).

Trichoderma species are producing various natural second-
ary metabolites of high value not only for plant protection
and growth promotion, but also for human health. With the
emergence of antibiotic-resistant pathogens, there is a press-
ing need to discover new antimicrobial agents. Therefore,
Trichoderma secondary metabolites have garnered consider-
able interest in drug development research.

The aim of this study was to evaluate three strains of 77icho-
derma spp., sourced from Turkey and Romania, for their
potential use in further biotechnological applications. To
reveal the potential use of these strains for agricultural pur-
poses, their antifungal activity was evaluated against important
plant pathogens. To highlight the potential use of naturally
derived secondary metabolites of these three Trichoderma
strains for medicinal purposes, the crude extracts of studied
Trichoderma spp. strains was evaluated for antibacterial and
antibiofilm properties.

CRYPTOGAMIE, MYCOLOGIE - 2023 + 44 (10)
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MATERIAL AND METHODS

TRICHODERMA SPP. STRAINS
Three strains of Trichoderma spp. were used in this study. Two
of these strains, Td-Exp1 and Td-Exp 2, were isolated from
soil samples, in Romania. The soils were collected from agri-
cultural lands cultivated with wheat (in the case of Td-Expl
isolation), and a mixture of cereals and winter leguminous
plants (in the case of Td-Exp2 isolation). For isolation, serial
dilutions were made on Rose Bengal Chloramphenicol agar
(RBC medium). The Turkish strain Zrichoderma sp. $4 was
isolated from bottled water, by membrane filtration method.

Their identification was previously made based on their
microscopic and macroscopic traits, as well as molecular
characteristics, according to the ITS1-5.8S-ITS2 region
(Tung 2021).

The strains were routinely grown on Potato Dextrose Agar
(PDA medium) and stored on slants at 4°C.

ANTIFUNGAL ASSAY

The antifungal activity of the Trichoderma strains was evalu-
ated against eight important fungal pathogens responsible for
plant diseases and spoilage: Alternaria sp. Nees, Botrytis cinerea
Pers., Fusarium culmorum (Wm.G.Sm.) Sacc., F graminearum
Schwabe, F oxysporum Schlidl., E proliferarum (Matsush.)
Nirenberg ex Gerlach & Nirenberg, Macrophomina phaseo-
lina (Tassi) Goid. and Sclerotinia sclerotiorum (Lib.) de Bary.

The antagonistic activity was performed by dual culture
technique on PDA. Each Trichoderma strain was co-inoculated,
at the same time, with the mentioned fungal pathogens.
Control plates for each tested pathogen were also prepared.
Plates were incubated at 26°C. Biometrical measurements of
the pathogens’ growth were made after seven days of incuba-
tion. Antagonistic efficacy (E%) was calculated based on the
pathogen radius in the test plates (RT) compared with the
control (RC), as follows: E (%) = (RC-RT)/RC*100 (Yang ez
al. 2018; Achimén et al. 2021; Olowe e al. 2022; Yassin et
al. 2022; Chan et al. 2023).

Potential hyperparasitism of the Trichoderma spp. was
visually evaluated after 10 to 14 days of co-culturing with
the pathogenic fungi. Trichoderma strains able to colonize
and grow over the pathogenic fungi were considered to be
hyperparasitic.

EXTRACTIONS FROM 7 RICHODERMA SPP.

The crude extracts of Trichoderma spp. secondary metabolites
were obtained from liquid cultures. For these, the Zricho-
derma spp. strains were first grown on PDA for 7-10 days. Five
mycelial discs, of 6 mm diameter, were aseptically removed
from these cultures and used to inoculate 100 mL of sporu-
lation medium, containing 40 g/L maltose, 10 g/L yeast
extract, and 10 g/L peptone. The flasks were incubated at
25°C in an orbital shaker at 200 rpm. After four days, 5 mL
cultures were transferred in 100 mL of wheat peptone broth
(ATCC medium 344, without agar). These cultures were
incubated for two weeks, as previously mentioned. After incu-
bation, the secondary metabolites produced by each culture
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TasLE 1. — Antifungal activity of Trichoderma spp. strains against certain plant pathogens. The data are presented as average values of antifungal efficacy
(E%) = standard deviation (SD). Different letters attributed within the same fungal interaction indicate a significant difference among the experimental variants.

Trichoderma spp. strains

Phytopatogenic fungi S4 Td-Exp1 Td-Exp2

Alternaria sp. Nees 68.6+4.1 ab 709+1.8a 62.8+2.5b
Botrytis cinerea Pers. 92.1+2.0a 91.3+09a 84.2+4.0a
Fusarium culmorum (Wm.G.Sm.) Sacc. 72.8+3.6a 72.0+42a 72.0+3.3a
Fusarium graminearum Schwabe 76.9x23 a 70.3x6.0a 65.7+5.7 a
Fusarium oxysporum Schitdl. 81.1+09a 77.2+1.6ab 71.4+£2.7Db
Fusarium proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg 76.3+53a 76.6+2.2 a 65.8+4.7 a
Macrophomina phaseolina (Tassi) Goid. 58.0+1.2a 60.1+0.2a 50.7+5.1a
Sclerotinia sclerotiorum (Lib.) de Bary 65.6+6.4 a 68.8+7.5a 64.2+7.2a

TaBLE 2. — Comparison of antimicrobial activities of different extracts obtained from Trichoderma spp. strains with agar diffusion method. Negative control

(methanol): 0.0 mm.

Inhibition zone diameter (mm =SD)

Organisms Td-Exp 1 Td-Exp 2 S4 Gen Pen
Staphylococcus aureus Rosenbach 14.1+£0.19 17.1+£0.09 17.2+0.29 - 29.0+0.00
Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bélz  9.0+0.08 20.0+0.05 10.4+0.14 - 18.0+0.00
Escherichia coli (Migula) Castellani & Chalmers 0.0+0.00 0.0+0.00 0.0+0.00 23.0+0.50 -
Bacillus subtilis (Ehrenberg ) Cohn 17.5+£0.50 21.7+0.58 19.2+0.29 22.0+£0.00 -
Pseudomonas aeruginosa (Schroeter) Migula 0.0+0.00 0.0+0.00 0.0+0.00 18.0+£0.50 -
Listeria monocytogenes (Murray et al.) Pirie 12.0+0.00 15.9+0.05 12.2+0.08 26.0+£0.00 -
Salmonella typhimurium (Loeffler) Castellani & Chalmers 0.0+0.00 0.0+0.00 0.0+0.00 21.0+£0.00 -

of Trichoderma spp. were extracted in 150 mL ethyl acetate,
by incubating at 25°C, for two hours at 120 rpm. The phases
were separated, and the ethyl acetate was evaporated at room
temperature, for 30 minutes. The crude extracts containing
Trichoderma spp. secondary metabolites were dried and stored
at4°C, and tested for antifungal measures (Khan ez /. 2020).

ANTIBACTERIAL EFFICACY TEST
Antibacterial susceptibility tests were performed using Gram-
positive S. aureus ATCC 6538, E. faecalis ATCC 29212,
B. subtilis ATCC 6633, L. monocytogenes NCTC 11994,
and Gram-negative P aeruginosa ATCC 15442, E. coli
ATCC 10536, and S. gphimurium ATCC 14028 bacteria.
Reference bacteria for the antibacterial assay were grown in TSA
medium for 18-24 hours. For the experiments, a suspension of
0.5 McFarland density was prepared from bacterial cultures.
Cultures were transferred to Mueller Hinton Agar medium
at a final concentration of 106 cfu/mL and poured into Petri
dishes. After the media was solidified, 25 pL of crude extract
dissolved in methanol were transferred to blank discs, placed
in the center of the petri dishes. Gentamicin (10 pg/mlL)
and penicillin (10 pg/mL) discs were used as the positive
controls, and pure methanol impregnated discs were used as
the negative control. After incubation, the zones of inhibi-
tion formed around the discs were measured and recorded

(Tong et al. 2018).

ANTIBIOFILM EFFECT OF 7TRICHODERMA SPP.

AND METABOLIC ACTIVITY OF BIOFILM

The metabolic activity was determined by XTT colori-
metric assay kit (Mossman 1983; Mohammadi-Bazargani
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et al. 2017). The cell cultures of S. aureus ATCC 6538,
B. subtilis ATCC 6633, E. fecalis ATCC 29212, L. mono-
cytogenes NCTC 11994, P aeruginosa ATCC 15442 and
E. coli ATCC 10536 were adjusted to 0.5 MacFarland. To
each well of 96-well microtiter plates, TSB medium and
cell culture were transferred and 7richoderma spp. extract
was added with increasing doses, ranging from 5 to 30 pl,
and incubated at 37°C for 24 hours. Then, the cell culture
was discarded, and each well was washed three times with
0.01 M phosphate-buffered saline (PBS; pH 7.2) to remove
unattached cells. After the microplates were dried, 100 pl
PBS and 50 pl XTT reaction solution (Cell Proliferation Kit;
Biological Industries) were added to each well. The plates were
incubated at 37°C for five hours. Absorbance was measured
at 450 nm using an Epoch Microplate Spectrophotometer
(BioTek, United States), and the percentages of antibiofilm
and metabolic activity were calculated. Triplicates were used
for each experiment.

STATISTICAL ANALYSIS

The experiments were performed in triplicate and the data
were expressed as means + SD. The statistical differences
between the groups were analyzed by Two-way ANOVA,
GraphPad v.9. P-values < 0.05 were statistically significant.

RESULTS
ANTIFUNGAL EFFICACY RESULTS

The antifungal activity of the Trichoderma spp. strains against
eight important plant pathogens was assayed (Table 1).

CRYPTOGAMIE, MYCOLOGIE - 2023 + 44 (10)
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Fic. 1. — In vitro antifungal activity of tested Trichoderma strains $4 (2), Td-Exp1 (3) and Td-Exp2 (4) against various plant pathogens (1), such as Fusarium culmorum
(Wm.G.Sm.) Sacc. (A), F. oxysporum Schitdl. (B), Macrophomina phaseolina (Tassi) Goid. (C) and Sclerotinia sclerotiorum (Lib.) de Bary (D). Scale bars: 1 cm.

The tested Trichoderma spp. strains revealed an antifungal
activity of at least 50% efficacy against all tested plant patho-
gens. However, the best results were obtained against Botrytis
cinerea, which was inhibited for at least 84.2% by Td-Exp2
strain, and up to 92.1% by the Turkish 7richoderma sp. $4
strain.

No significant differences were revealed among the 7rich-
oderma spp. strains in most of the antagonistic interactions

CRYPTOGAMIE, MYCOLOGIE - 2023 + 44 (10)

performed. However, the Td-Exp2 strain revealed less antifungal
activity against Alternaria sp. and E oxysporum, compared to
the other two biocontrol strains tested (Fig. 1).
Mycoparasitic development of tested Trichoderma spp.
strains varied, depending on the microbial interaction (Fig. 2).
However, compared to $4 and Td-Exp1 (Fig. 3), the Td-Exp2
strain showed reduced mycoparasitic activity against some of
the tested phytopathogens, this strain was able to colonize
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s

B Td-Exp1 I Td-Exp2

Mycoparasitic range (mm)

Phytopatogenic fungi

FiG. 2. — Trichoderma Pers. hyperparasitic development on various plant pathogens: Alt., Alternaria sp. Nees; B.c., Botrytis cinerea Pers.; F.c., Fusarium culmorum
(Wm.G.Sm.) Sacc.; FE.g., F graminearum Schwabe; F.0., F. oxysporum Schitdl.; Fp., F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg; M.p., Macrophomina

phaseolina (Tassi) Goid.; S.s., Sclerotinia sclerotiorum (Lib.) de Bary.

and hyperparasitize four to six-time larger mycelia areas of
E oxysporum and M. phaseolina respectively, than the other
two biocontrol strains tested.

ANTIBACTERIAL EFFICACY RESULTS

Diffusion assay was performed to determine the antibacterial
activity of crude extract obtained from 3 different 77icho-
derma spp. strains. The data of the inhibition zones formed
are given in the Table 2. The Td-Exp2 strain showed highest
activity among tested extracts. The inhibition zone ranged of
12.00-17.50 mm in diameter with Td-Exp1, 15.9-21.7 mm
with Td-Exp2, and 12.2-19.2 mm with $4 strain. Notwith-
standing the spore-forming nature of B. subtilis ATCC 6633,
all Trichoderma species demonstrated notable efficacy against
this bacterium. Results suggest that isolates Td-Exp 2 and
$4 strain exhibit notable inhibitory activity against S. aureus
Rosenbach. The extracts obtained from tested Trichoderma
spp. strains demonstrated significant inhibitory efficacy against
L. monocytogenes (Mutray et al.) Pirie, a food pathogen that
can cause serious health problems such as meningitis, abortus,
and hydrocephalus (Fig. 4). Despite their high effectiveness
against gram-positive strains, all extracts did not exhibit any
activity against the gram-negative test strains.

ANTIBIOFILM EFFICACY RESULTS

The antibiofilm activity of Trichoderma spp. samples against
S. aureus, B. subtilis, E. faecalis (Andrewes & Horder) Schleifer &
Kilpper-Bilz and L. monocytogenes were determined by XTT
Assay kit. After incubation for 24 hours, no decreasing of
metabolic activity of cells treated with Td-Expl and Td-
Exp2 was observed, implying that these samples do not have
antibiofilm activity against all selected bacteria. However,
Trichoderma sp. $4 showed significant inhibitory activity
against tested pathogens (Fig. 5).
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DISCUSSION

Agriculture is an essential part of any country, not only to
ensure the food supply for the people but also for economic
progress. However, agricultural crops are under constant
threat of pests and diseases, and this situation will continue
to increase with the climate change. Chemical pesticides
are commonly used for plant protection. However, due to
consumers’ interests for organic or more sustainable food
products, as well as for environmentally friendly production
systems, more attention is given to the biologic alternative
agro-inoculants, such as Trichoderma-based products. In order
to contribute to these requirements, the antimicrobial effects
of some Trichoderma spp. strains were evaluated. It has been
observed that the studied strains inhibit the development of
important plant pathogenic fungi (Boiu-Sicuia & Cornea
2021), opportunistic human pathogens (Toma ez /. 2023)
and food contaminants (Ankita & Jayanthi 2018). Similar
aspects are revealed by various studies with different other
Trichoderma spp. strains (Nuankeaw ez al. 2019; Tyskiewicz
et al. 2022).

Many Trichoderma-based bioproducts are currently available
on the market (Tyskiewicz ez /. 2022), while in the European
Union, there are 11 strains approved as active ingredients in
plant protection products: Trichoderma asperellum 1CC012,
125, T34, TV1, T" atrobrunneum ITEM 908, T atroviride
1-1237, IMI 206040, SC1, T11, T gamsii ICC080, and
1 harzianum T-22 strains (European Union Pesticides Data-
base 2023). Numerous studies confirm the wide antifungal
and mycoparasitic activity of Trichoderma species against
various plant pathogens (Guzmédn-Guzmin er al. 2023;
Yao et al. 2023). In dual culture antagonism studies, vari-
ous strains of 7. virens (J.H.Miller, Giddens & A.A.Foster)
Arx, T pseudokoningii Rifai and 7. harzianum Rifai revealed
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Fic. 3. — Mycoparasitic activity of Trichoderma Td-Exp1 strains against plant pathogens: A, Botrytis cinerea Pers.; B, Fusarium graminearum Schwabe; C, Sclerotinia

sclerotiorum (Lib.) de Bary. Scale bars: 1 cm.

S. aureaus

B. subtilis

L. monocytogenes

FiG. 4. — Clear inhibition zone revealed by the Trichoderma spp. crude extract against some human pathogenic bacteria.

Alternaria sp. inhibition percentages of 43.62%, 36.6% and
52.55%, respectively, as well as hyperparasitic mycelial over-
growth (Rahman ez /. 2020). Similar dual culture antagonism
studies against Botrytis cinerea, revealed 62.05% pathogen
growth inhibition when using a biocontrol 7. harzianum strain
(Geng eral. 2022). Against £ culmorum, certain 1. viride Pers.,
T viridescens (A.S.Horne & H.S.Will.) Jaklitsch & Samuels

CRYPTOGAMIE, MYCOLOGIE - 2023 + 44 (10)

and 7. atroviride PXarst. revealed 30 to 65.6% mycelia inhi-
bition (Modrzewska ez al. 2022). Compared to all these, the
Trichoderma spp. strains used in this study revealed superior
antifungal activity.

Similar antifungal activity was seen among tested Tricho-
derma spp. strains and various 7 asperellum Samuels, Lieckf. &
Nirenbergand 7. harzianum strains against F graminearum (Li
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Fic. 5. — Metabolic activity in biofilm and antibiofilm effect of Trichoderma spp. against human pathogenic bacterial strains. Symbols: ns, no significant; *, p<0.05;
** p<0.01; ***, p<0.001; *** p<0.0001.

eral. 2016). Other Romanian native Zrichoderma spp. strains  eflicacy against £ oxysporum (Petrisor ez al. 2017). According
revealed weaker antifungal activity compared to the currently  to Bai ezal. (2023), terpenoids are the most abundant bioactive
presented strains, showing only 56.15 to 67.69 % inhibition  compounds in 77ichoderma species. Moreover, they have stated
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that a total of 253 terpenoids, including 202 sesquiterpenes,
48 diterpenes, two monoterpenes and one meroterpenoid,
were isolated and identified from Trichoderma species between
1948 and 2022 (Bai ez 2/ 2023). Thus, we considered that
the strong antibiofilm activity of $4 may be related to the
synergism between similar secondary metabolites.

In vitro studies performed by Khan ez al. (2021) to suppress
M. phaseolina growth, revealed that tested 7. viride has higher
antagonistic potential (63%) than the strains of 7. koningii
Oudem., 7" hamatum (Bonord.) Bainier, 7. longipile Bissett
(46-47%) and T. harzianum (28%). Other antagonistic studies
petformed with T atroviride, T. gamsii Samuels & Druzhinina,
1. koningiopsis Samuels, Carm.Sudrez & H.C.Evans and T viri-
descens against Sclerotinia sclerotiorum, revealed 46-60% anti-
fungal potential, with best results obtained with 7. azroviride
(Hidayah ez a/. 2022). Higher antifungal activity, of 63.8%,
against S. sclerotiorum was seen when using 7. ghanense T11
strain. However, the biocontrol potential can differ between
the strains of the same species. Among different strains of
1. atroviride the antifungal efficacy against S. sclerotiorum
varied from 54.4 to 58.2%, with 7. asperellum the efficacy
fluctuated from 52.9 to 58.5%, among 7. citrinoviride Bis-
sett strains the antifungal efficacy varied from 45.0 to 58.8%,
within 7. harzianum from 54.4 to 60.3%, while within
1. longibrachiatum Rifai from 54.1 to 63.8% (Hernandez
Castillo ez al. 2011), all these being less effective compared
to the strains presented in the current study.

Studies performed with 7. atroviride against pathogenic
bacteria revealed that it inhibited the growth of gram-positive
bacteria, S. aureus and S. epidermidis (Winslow & Winslow)
Evans, rather than gram negative (Vigla$ & Olejnikovd 2019).
Similar features were observed also in the present study, with
the tested 77ichoderma strains, which also inhibited bacterial
biofilm development (Fig. 5). Although there is no precise
estimate for clinically important fungi, it has been calculated
that approximately 80% of recurrent and chronic bacterial
infections (Davies 2003) and 500 000 deaths annually (Sharifi
et al. 2018) are attributed to biofilms.

Most diseases caused by Candida albicans Berkhout are
associated with biofilm formation on abiotic or host surfaces
(Nett & Andes 2006; Mathe & Van Dijck 2013). More
importantly, C. albicans is adept at adhering to catheters and
various medical implants. It is currently classified by the Cent-
ers for Disease Control and Prevention in the United States
as the third most frequently isolated bloodstream pathogen
in hospitalized patients (Wisplinghoff ez a/. 2004; Tournu &
Van Dijck 2012; Mathe & Van Dijck 2013).

Trichoderma species are well known for their antifungal
activities against both human and plant pathogenic fungi, and
exhibit a broad spectrum of antifungal activity against vari-
ous fungi, such as C. albicans, C. krusei (Castell.) Berkhout,
Saccharomyces cerevisiae (Desm.) Meyen, Torulopsis glabrata
(H.W.Anderson) Lodder & N.Ede Vries, Aspergillus fumiga-
tus Fresen. and A. niger van Tieghem. Watanabe ez a/. (1990)
revealed remarkable antifungal activity of Trichoderma spp.
especially against different strains of Candida Berkhout, with
MIC values ranging from 0.4 to 12.5 Ig/mL.
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Further studies should be done to characterize the secondary
metabolites synthetized by the studied 7richoderma strains, in
order to identify the nature of their antimicrobial compounds.
Such findings could support the use of valuable biocontrol
strains that can reduce the use of chemical pesticides or even
replace them.

CONCLUSION

'The Trichoderma spp. strains Td-Exp 1, Td-Exp 2 and $4 used
in this study, inhibited various fungal phytopathogens as well
as human pathogenic bacteria. Notably, $4 strain revealed
the highest inhibitory activity, followed by Td-Exp 1 for the
antifungal action, and Td-Exp 2 for antibacterial action.

Additionally, the crude extract of Trichoderma sp. $4 strain
was shown antibiofilm activity against important human
pathogens such as S. aureus, L. monocytogenes and E. faecalis.

These results highlight the potential use of Trichoderma sp.
$4 strain as biocontrol agent against important plant and
human pathogens, which makes it a promising alternative
to synthetic pesticides.
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