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ABSTRACT
Reports of cannibalistic behavior in fossil muricids are scarce and are only known from the Qua-
ternary. This study presents evidence of cannibalism among Crassimurex (s. s.) calcitrapa (Lamarck, 
1803), from the Lutetian of the Paris Basin (France). The studied material comes from the quarry 
of La Ferme de l’Orme (Yvelines, France) and was collected in a unit (unit 6) in which this species 
is the lone drilling predator. The paleoenvironment of this bed corresponds to intertidal or shallow 
subtidal brackish facies and C. (s. s.) calcitrapa is associated with an assemblage containing other 
euryhaline species. The samples collected include 132 specimens, among which 14 display preda-
tory holes attributed to conspecifics, thus suggesting cannibalism. Small specimens between 2-7 mm 
are the most commonly drilled and the size of drill holes indicates that juveniles as well as adults 
are responsible of these attacks. We also observed a global selection of drilling sites that are well 
oriented to the weak points of the shell (between the varices and avoiding the spines). Finally, this 
study shows that behaviors such as predation on juveniles, selection of weak parts of the shell and 
multiple drill holes on the same prey are similar to Quaternary and extant cases. The precise condi-
tions leading to cannibalism are difficult to highlight, but subtidal brackish facies are accompanied 
by many environmental stressors that can promote opportunistic behaviors such as occasional can-
nibalism. Also, the sudden appearance of cohorts of hatchlings adds to these stressors.
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INTRODUCTION

Drill holes, Oichnus (Bromley, 1981), made by gastropods 
constitute a highly visible part of the bioerosion process, and 
a clear record of fossil predation in the geological record. They 
have been widely used by biologists and paleontologists to 
study predator-prey interactions over a wide range of spatial, 
temporal and phylogenetic scales. Cenozoic and modern 
drill holes have been reported in muricid and naticid fami-
lies by many authors (for reviews and references see Carriker 
1981; Kitchell et al. 1981; Vermeij 1983, 1987; Kabat 1990; 
 Leighton 2002; Kowalewski & Kelley 2002; Kelley et al. 2003; 
 Kowalewski 2004; Kelley & Hansen 2007; Goldstein et al. 
2014), particularly in the ranellid (Argobuccinum  Herrmannsen, 
1846 [Day 1969]) and nassarid (Nassarius Duméril, 1805 
[Morton & Chan 1997]) groups.

For paleontologists, the recognition of these drill hole 
morphologies gives one of the few cases of direct evidence 
of feeding for both families (Taylor 1970; Hofman et al. 
1974; Kojumdjieva 1974 in Kabat 1990; Chattopadhyay 
et al. 2014; Bošnjak et al. 2021). Moreover, this oppor-
tunity to discriminate muricid from naticid drill holes 
allows documentation of cannibalism, i.e., an intraspecific 
interaction having the potential to alter the functional 
relationship of predator-prey interactions (Rudolf 2008). 
The objective of this paper is to describe cases of cannibal-
ism in the Eocene Crassimurex (s. s.) calcitrapa (Lamarck, 
1803) from the Paris Basin, the earliest occurrence of 
this behavior in the muricid fossil record. These were dis-
covered by random sampling at the outcrop of La Ferme 
de l’Orme (middle Lutetian). We will successively detail 
the geological context of these findings and the different 
lines of evidence supporting a hypothesis of cannibalism 
in this species.

MATERIAL AND METHODS

ColleCtion of the speCimens  
of Crassimurex (s. s.) CalCitrapa

Random bulk samples were collected in 2011 from unit 6, 
at 10 meter intervals across the face of the old quarry of 
La Ferme de l’Orme. In 2014 another location 150 m west, 
also within the actual protected site, was also collected. The 
samples of about 5 kg in 2011, and 2 kg in 2014, were dry 
sieved through sieves of 5 mm, 2 mm, 1 mm, and 53 microns 
in order to collect complete and subcomplete specimens of 
Crassimurex (s. s.) calcitrapa of all sizes.

Drill hole iDentifiCation

After sieving, specimens of C. (s. s.) calcitrapa were extracted 
from the rest of the fauna for study. All identifiable shells 
were counted, whether complete or partial. Each specimen 
was carefully examined with a binocular microscope to look 
for the presence of drill holes. The location of the drilling 
trace was photographed for each specimen bearing drill holes.

measurements

Measurements of the height of the specimens were taken with 
a micrometer, and drill hole diameters were measured using 
image J (Schneider et al. 2012).

abbreviations

Institutional abbreviations
AMNH  American Museum of Natural History, New York;
MNHN.F  Muséum national d’Histoire naturelle, Paris, paleon-

tological collections.

Other abbreviation
EDS Elementary Depositional Sequence.

RÉSUMÉ
Première observation d’un comportement cannibale chez Crassimurex (s. s.) calcitrapa (Lamarck, 1804) 
(Gastropoda, Muricidae) du Lutétien du bassin de Paris (France).
Les signalisations de comportement cannibale chez les fossiles de Muricidae sont rares et ne sont 
connus que du Quaternaire. Dans cette étude, nous présentons le cas très ancien de Crassimurex 
(s. s.) calcitrapa (Lamarck, 1803) du Lutétien du bassin de Paris (France). Le matériel étudié provient 
de la carrière de La Ferme de l’Orme (Yvelines, France) et a été recueilli dans le niveau 6, dans lequel 
cette espèce est le seul prédateur. Le paléoenvironnement correspond à un faciès intertidal lagunaire 
et C. (s. s.) calcitrapa est associé à un assemblage contenant quelques autres espèces d’euryhaline. 
L’échantillonnage a permis de collecter 132 spécimens dont 14 présentent des perforations attribuées à 
des congénères, suggérant ainsi un cannibalisme. Les petits spécimens entre 2 et 7 mm sont principa-
lement perforés et la taille des trous indique que les juvéniles, aussi que les adultes, sont responsables 
de ces attaques. De plus, le choix global des emplacements de perforation est nettement orienté vers 
les points faibles de la coquille (entre les varices et en évitant les épines). Enfin, cette étude montre 
que des comportements tels que la prédation sur les juvéniles, la sélection des parties faibles de la 
coquille ou les perforations multiples sur une même proie sont similaires aux cas déjà observés dans 
le Quaternaire et l’actuel. Les conditions précises conduisant à un comportement cannibale sont dif-
ficiles à élucider. Cependant, les faciès intertidaux lagunaires s’accompagnent de nombreux facteurs 
de stress environnementaux, auxquels s’ajoute l’apparition soudaine de cohortes de nouveau-nés, ce 
qui peut favoriser des comportements opportunistes tels qu’un cannibalisme occasionnel.

MOTS CLÉS
Éocène,

Muricidae,
cannibalisme, 
perforations,

bassin de Paris.
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GEOLOGICAL SETTING

GeoGraphiCal loCation of the site

The quarry of La Ferme de l’Orme is located in the com-
mune of Beynes, 36 km West of Paris (Fig. 1), on the left of 
the D11 in the direction of Saulx-Marchais in Neauphle-le- 
Château. The location of the quarry is indicated in the guide 
of Pomerol & Feugueur (1974).

DesCription of the seCtion

The exposure includes the uppermost middle Lutetian, but few 
strata are visible (Fig. 2). Several sections have been logged and 
published, notably those of Goubert (1863), Abrard (1925), 
Merle & Courville (2008) and Chattopadhyay et al. (2016). 
The present state of the quarry unfortunately does not allow 
examination of the lower part of the section, which includes 
a white limestone rich in Orbitolites complanatus Lamarck, 
1801. The upper part is the only one that is visible and dis-
plays five beds (units 1-5). Among them one can identify the 
Seraphs Montfort, 1810 and Avicularium Gray, 1853 lime-
stone bed (unit 4) that can be seen at the top of La Falunière 
at Grignon. These beds correspond to the top of the EDS 4 
(Elementary Depositional Sequence) of Chattopadhyay et al. 
(2016: fig. 1). Approximately 1 m above this bed can be dis-
tinguished a Potamides lapidorum (Lamarck, 1804), batillariids 
and Crassimurex (s. s.) calcitrapa bed (unit 6 = EDS 5 of Chat-

topadhyay et al. 2016), indicative of an intertidal brackish 
facies (Figs 2; 3). The material of C. (s. s.) calcitrapa collected 
for this study comes exclusively from this unit. Closer to the 
top, a stratum of green marls (unit 7) contains a freshwater 
fauna with numerous Staliola Brusina, 1870, lymnaeids and 
vertebrate remains (Goubert 1863). The section is overlain by 
a limestone bed with powdery molluscs, indicating a return 
of the marine environment (unit 8 = EDS 6 of Chattopad-
hyay et al. 2016). During the 1880s, Cossmann (1886-1913, 
1904-1913) mentioned La Ferme de l’Orme several times in 
his publications on molluscs and Fritel (1910) wrote that the 
site was famed as one of the most species-rich of the Paris 
basin. By relying on the programs of Strategy of Creation of 
Protected metropolitan Areas (SCAP) and the National Inven-
tory of the Geological Heritage (INPG), this paleontological 
site of international value threatened by anthropic activities 
was selected in 2018 for the APPG (Prefectural Decree of the 
Protection of the Geotope) along with the site of Grignon 
(Auberger et al. 2018).

paleoeColoGy of Crassimurex (s. s.) CalCitrapa

Crassimurex (s. s.) calcitrapa is a euryhaline Lutetian species 
and clearly prefers intertidal or shallow subtidal brack-
ish facies. In the middle Lutetian of the Paris Basin, it 
is common in several localities (La Ferme de l’Orme (at 
Beynes), Grignon, Villiers-Saint-Frédéric, Montchauvet, etc.).  

fig. 1. — Geographical location of La Ferme de l’Orme (Beynes, Yvelines, France). The locality (in red font) is indicated on the map of the extension of the Lutetian 
sediments (modified from de Wever & Cornée 2008).
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At La Ferme de l’Orme (unit 6), the identification work 
allowed to recognize 46 species of mollusks (31 gastropopods 
and 15 bivalves) including only one driller, Crassimurex (s. s.) 
calcitrapa. It is the sole driller as no naticid and no other 
muricid is recorded in this paucispecific assemblage. This 
observation is very important, because in the absence of 
other predators, we can hypothesize that all the drill holes 
can only come from C. (s. s.) calcitrapa. In the same locality, 
it is associated with other euryhaline species. These include: 
Potamides lapidorum (Lamarck, 1804), Vicinocerithium 
 calcitrapoides (Lamarck, 1804), Serratocerithium denticula
tum (Lamarck, 1804) and Saxolucina saxorum (Lamarck, 
1806). It is responsible for drill holes on V. calcitrapoides 
and S. serratum (Fig. 4A-C). Crassimurex (s. s.) calcitrapa can 
be also a prey and traces of peeling by crabs are observed in 
seven specimens (Fig. 4D).

RESULTS

Different aspects of the growth of the shell of C. (s. s.) calci
trapa and the characteristics of the drill holes are developed 
below as follows: 1) growth and appearance of the sculpture 
is given to evaluate when the sculptural elements can protect 
the individuals; 2) prey size and predation pressure; 3) rela-
tionship of the size of the prey to the size of the predator based 
on the diameter of drill holes; 4) drill hole site selection; and 
5) occurrence of multiple drill holes.

Growth anD appearanCe of the sCulpture

Adults of Crassimurex (s. s.) calcitrapa have small armoured 
shells and sculptural elements (spiral rows of cords, alignments 
of cord spines, reinforced varices) that can be considered 
as a deterrence to shell drillers. However, they are missing 

fig. 2. — The section of La Ferme de l’Orme (Beynes, Yvelines, France) from Merle & Courville (2008). The material of Crassimurex (s. s.) calcitrapa (Lamarck, 
1803) collected for this study comes exclusively from the unit 6.
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fig. 3. — View of the unit 6 of La Ferme de l’Orme section (Beynes, Yvelines, France) in which Crassimurex (s. s.) calcitrapa (Lamarck, 1803) was collected. Credits: 
Isabelle Rouget (MNHN). Lenght of the meter: 20 cm.

table 1. — Characteristics of the specimens of C. (s. s.) calcitrapa (Lamarck, 1803) bearing drill holes. The star (*) indicates the specimens bearing two drill holes.

Specimens 
number

Specimen 
lenght mm

Number of 
teleoconch whorls

Drilled whorl Diameter of 
hole (in mm)

Complete 
or not

Location of the 
hole

Comment on the 
location of the holes

MNHN.F.A91214 19.38 5 incomplete Fifth 1.20 No Abapertural side On the shoulder,  
near the suture

MNHN.F.A91213 18.47 5 incomplete Fifth 1.05 No Apertural side On the varix
MNHN.F.A91212 12.87* 4 incomplete Third 0.8 Yes Abapertural side In an intervarice
MNHN.F.A91212 12.87* 4 incomplete Fourth 0.6 No Abapertural side On the shoulder,  

in an intervarice
MNHN.F.A91211 10.69* 4 incomplete Fourth 0.95 Yes Abapertural side On the shoulder, 

in an intervarice
MNHN.F.A91211 10.69* 4 incomplete Third 1.00 No Adapertural side On the top of the whorl, 

in an intervarice
MNHN.F.A91210 7.06 3 incomplete 1-2th (suture) 1.20 Yes Adapertural side On the suture, 

in an intervarice, single 
hole with two opening

MNHN.F.A91209 4.45* 5 Fourth 0.4 Yes Abapertural side On the top of the whorl, 
in an intervarice

MNHN.F.A91209 4.45* 5 Third 0.25 Yes Abapertural side On the suture,  
in an intervarice

MNHN.F.A91208 4.37 3.5 1.5th 0.10 Yes Abapertural side On the shoulder,  
in an intervarice

MNHN.F.A91207 3.15 3.5 Third 0.35 Yes Abapertural side On the top of the whorl, 
in an intervarice

MNHN.F.A91206 3.43 3 2-3th (suture) 0.10 Yes Abapertural side Near the shoulder, in an 
intervarice, single hole 
with two openings

MNHN.F.A91205 3.30 3.25 Third 0.50 Yes Abapertural side On the centre of the 
whorl, in an intervarice

MNHN.F.A91204 3.95 1.5 Second 0.85 Yes Abapertural side On the top of the whorl, 
in an intervarice,  
large hole

MNHN.F.A91203 3.25 2.5 Beginning of 
the first

0.60 Yes Adapertural side On the centre of the 
whorl, in an intervarice

MNHN.F.A91202 3.10 2.5 Protoconch/ 
first (suture)

0.70 Yes Abapertural side In an intervarice, single 
hole with two openings

MNHN.F.A91201 2.50 1.5 First 0.40 Yes Apertural side In an intervarice

http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91214
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91213
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91212
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91212
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91211
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91211
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91210
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91209
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91209
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91208
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91207
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91206
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91205
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91204
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91203
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91202
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91201
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or thin in juveniles and appear during ontogeny. Therefore, 
an understanding of shell growth can help explain which areas 
of the shell were more easily drilled by predators during the 
life of individuals. We thus note that the ontogeny of these 
elements. Crassimurex (s. s.) calcitrapa bears a multispiral pro-
toconch indicating planktotrophic larvae (Merle et al. 2011: 
text-fig. 61F) such that the protoconch is devoid of sculpture. 
The development of the spiral sculpture on the teleoconch 
was partly described by Merle & Pacaud (2002) who showed 
that all primary cords and cord spines on the convex part of 
the whorl (P1 to P5, see Merle 2001 for the terminology) are 
present on the 5th teleoconch whorl. 

Observations of younger specimens demonstrate that 
P1 to P3 are already present on the third teleoconch whorl 
(Fig. 5A). More abapical cords on the siphonal canal (ADP, 
MP and ABP) appear during the fifth teleoconch whorl 
(Fig. 5C) and secondary cords appear later (Fig. 5D). Cord 
spines are present in the typical morphotype of the species 
present at La Ferme de l’Orme (unit 6). The ontogeny of 
the sculpture demonstrates a progressive appearance of its 
elements (spiral rows of cords and axial alignments of cord 
spines) and suggests that individuals become less vulnerable 
to predation as they grow, particularly when they reach the 
5th whorl (see Fig. 5C). Also, the appearance of sculptural 

fig. 5. — Growth of the sculpture of Crassimurex (s. s.) calcitrapa (Lamarck, 1803) with the appearance of spiral cords and cord spines: A, MNHN.F.A91206 
(Goldstein leg), spm of three teleoconch whorls; B, MNHN.F.A91209 (Goldstein leg), spm of four teleoconch whorls; C, MNHN.F.A91216 (Goldstein leg), spm of 
five teleoconch whorls; D, MNHN.F.A31217 (Goldstein leg), spm of ?seven teleoconch whorls with spm A of the same relative size for comparison. Scale bars: 
1 mm. Credits: L. Cazes. The identification of the spiral cords adopts the terminology suggested by Merle (2001, 2005).

fig. 4. — Different paleobiological aspects of C. (s .s.) calcitrapa (Lamarck, 1803) at La Ferme de l’Orme (unit 6): A-C, feeding (drill holes) on cerithioids: A, Serrato-
cerithium denticulatum (Lamarck, 1804), D. Goldstein coll.; B, Vicinocerithium calcitrapoides (Lamarck, 1804 ), D. Goldstein coll.; C, same species, detailed view of 
a drill hole, D. Goldstein coll.; D, MNHN.F.A91215 (Goldstein leg), specimen peeled by a crab. Scale bars: A, D, 5 mm; B, 10 mm; C, 1 mm. Credits: D. Goldstein. 

A B C D

A

A

B C D

s3

s1
 P1

 P1
 P1

 P1
 P1

 P1

 P1

 P1

 P1

 P1

P5
P6

P2
P3

P4
P3

P4

P5
P6 ADP

MP
ABP

ADP
MP
ABP

P2

P3

P1

P2
P2

P4

P5

P3

 P1

http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91206
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91209
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91216
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A31217
http://coldb.mnhn.fr/CatalogNumber/MNHN/F/A91215


463 

Cannibalism in Crassimurex (s. s.) calcitrapa Lutetian, Paris basin

GEODIVERSITAS • 2024 • 46 (13)

elements occurs with the thickening of the shell, which 
reinforces its resistance to drilling. In addition, cord spines 
and particularly P1 spine, which is more developed than the 
other cord spines, constitute an important mean of defense 
against predators.

prey size anD preDation pressure

Sieving of samples from the unit 6 allowed us to collect 
132 specimens of C. (s. s.) calcitrapa of which 14 specimens 
(Fig. 6; Table 1) display drill holes representing 10.61% of the 
total. The smallest specimen with signs of attack is 2.5 mm in 
length. The largest drilled specimen, an adult of 18.47 mm 
in height, has an incomplete hole, indicating an interrupted 
drilling process under unknown circumstances (e.g., another 
predator or perhaps abandonment from lack of success). Thus, 
10.61% of all specimens are drilled during various ontoge-

netic phases ranging from very young specimens to young 
adults not exceeding 19 mm in height. Figure 7 illustrates 
the proportion of specimens not drilled versus drilled. These 
are divided into three size class intervals, one ranging from 
0 to 9 mm in height (class I) and corresponding to juveniles 
very exposed to drilling, another ranging from 10 to 19 mm 
(class II) in which the drill holes are scarcer, and a class above 
20 mm to 32 mm (class III) in which the specimens no longer 
have drill holes. The class I records 71% of the drill holes and 
clearly demonstrates that it is the most vulnerable class to this 
type of predation. In the class II, only four specimens, having 
a size varying from 10 to 19 mm, bear drill holes. This result 
is in accordance with observations demonstrating that the 
sculptural elements (cords and cord spines) appear in young 
adults and contribute to drill resistance via reinforcement of 
the shells by increasing its thickness.

fig. 6. — Specimens of C. (s. s.) calcitrapa (Lamarck, 1803) from La Ferme de l’Orme (Beynes, Yvelines) bearing muricid drill holes: A, C, D, E, H, complete single holes 
with one opening: A, MNHN.F.A91201; C, MNHN.F.A91203; D, MNHN.F.A91204; E, MNHN.F.A91205; G, MNHN.F.A91207; H, MNHN.F.A91208; B, F, J, complete 
single holes with two openings: B, MNHN.F.A91202; F, MNHN.A91206; J, MNHN.F.A91210; I, K, L, two complete holes: I, MNHN.F.A91209; K, MNHN.F.A91211; 
L, MNHN.F.A91212; M, N, incomplete holes: M, MNHN.F.A91213; N, MNHN.F.A91214. Scale bars: A-J, 1 mm; K-N, 5 mm. Credits: L. Cazes (MNHN/CNRS).
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relationship of the size of the prey  
to the size of the preDator 
Based on the drill hole diameters, which can be correlated to 
the size of the attacker (Kowalewski 2004), individuals of all 
sizes drill conspecifics. On the bivariate plot Figure 8, we can 
observe that the class 0-7 mm displays the widest range of size 
hole ranging from 0.10 mm (for a specimen of 3.43 mm) to 
1.2 mm (for a specimen of 7.06 mm). The hole of 0.10 mm 
is the smallest that we found and it was made likely by a very 
young individual. Conversely, 1.2 mm corresponds to the largest 
hole encountered. Therefore, we can deduce that juveniles as 
well as adults were potential predators of juvenile and sub-adult 
individuals. In the class 7-32 mm, the size range of the holes is 
narrower, ranging from 0.95 mm to 1.2 mm, and seems to be 
the result of the action of larger individuals. This observation 
indicates that only adults only attack other adults. Further-
more, the two larger specimens of this class (H: 19.38 mm and 
18.47 mm) bear unsuccessful attacks with unfinished holes, 
suggesting greater predation difficulty on larger individuals. 

Drill hole site seleCtion

All of the drilling attacks are based on an operating princi-
ple which consists of attacks systematically located between 
two varices (in the intervarices) and avoiding P1 spines that 
represent reinforcement of the shell. The only attack that 
does not follow this principle was made on the varix of an 
individual of 18.14 mm and ended in failure. On the spire 
of young specimens, the holes can be at different places (top 
of the whorl near the adapical suture, centre of the whorl or 
base of whorl, near the abapical suture). On the last whorl, 
holes are more commonly located on the centre of the whorl 
in the thinner part of the shell. 

multiple Drill holes

Three specimens have two drill holes. One is a small 
specimen of 4.45 mm in height and two, larger, are of 
10.69 mm and 12.87 in height. We have also observed 
on C. (s. s.) calcitrapa prey species that multiple drill holes 
are a frequent occurrence (21.43% of the total) and that 
most swarming attacks involve predators of different sizes, 
determined by their drilling diameter; typically, one adult 
and several juveniles.

DISCUSSION

As Octopid species are also predatory and produce drill holes, 
it is necessary for our cannibalism hypothesis to confirm that 
the drill holes described herein are not produced by Octopid 
predation. The morphological characters allowing us to dis-
tinguish Octopus and naticid drill holes from the muricid drill 
holes observed on C. (s. s.) calcitrapa will be discussed first in 
this section. Then, the predation on C. (s. s.) calcitrapa will 
be placed in the stratigraphic context of muricid drill holes, 
followed by discussion of the cannibalistic behavior of this 
Lutetian species.

OCtOpus, natiCiDs or muriCiD Drill holes maDe 
on Crassimurex (s. s.) CalCitrapa?
Differences from Octopus drill holes
Fuchs et al. (2009) reported the occurrence of the oldest 
Octopodidae d’Orbigny, 1840 from the the Upper Cenoma-
nian Lagerstätte of Hâqel (Lebanon) with Styletoctopus annae 
Fuchs, Bracchi & Weis, 2009. In the Cenozoic, there is 
no documented report of octopid specimens, but octopod 

fig. 7. — Drilled versus non-drilled Crassimurex (s. s.) calcitrapa (Lamarck, 1803) shells in three size classes. Size classes (shell lenght): I, 0-9 mm; II, 10-19 mm; 
III, 19-32 mm.

100

90

80

70

60

50

40

30

20

10

0
I II III

Classes

Drilled Not drilled

N
um

b
er

 o
f s

p
ec

im
en

s



465 

Cannibalism in Crassimurex (s. s.) calcitrapa Lutetian, Paris basin

GEODIVERSITAS • 2024 • 46 (13)

feeding traces were found in the large bivalve of Venericor 
 clarendonensis (S. W. Wood, 1871) from the early Eocene of 
Southern England (Todd & Harper 2011).

Octopus breach the shells of their prey in two ways, break-
ing the shell with their beaks, leaving characteristic paired 
irregular breaks, (Table 2 pattern B), and drilling through the 
shells to inject a paralyzing venom (Arnold & Arnold 1969). 
This method of drilling is described as grasping and position-
ing the prey. Gastropod prey is held with the shell aperture 
downward (Arnold & Arnold 1969), then rasping the shell 
with the papillary teeth (Nixon et al. 1980), repositioning 
the shell and rasping again. This sequence is repeated until 
the shell is penetrated (Arnold & Arnold 1969). Rasping is 
done in straight lines but because of the rotation, variable 
shapes are produced (Hiemstra 2015). The resulting drill 
holes range from irregular ovals corresponding to Oichnos 

ovalis (Bromley, 1993), to rounded holes corresponding to 
Oichnos simplex (Bromley, 1981) (Fig. 9A1, B-E). The edges 
of the drill holes are not as crisp or clearly defined as those 
made by muricids (Fig. 9F-I; Table 2), and the holes are not 
as perfectly circular even when corresponding to Oichnos 
simplex (Todd & Harper 2011). 

In depth, the drill holes of Octopus frequently show changes 
of width and direction (see Table 2 pattern C, Arnold & 
Arnold 1969 and Fig. 9A2). There is a marked preference for 
octopodoids to drill in the ventral-left-posterior (parietal) part 
of gastropods (Table 2 pattern C) because that is closest to 
the columellar muscle (Arnold & Arnold 1969; Nixon et al. 
1980; Klompmaker & Kittle 2021). 

In contrast to the above, muricid drill holes are typically 
Oichnos simplex. In thicker shells the round cross section 
and straight to slightly sloping sides are evident (Table 2 

fig. 8. — Bivariate plot of specimen length against drill hole diameter in Crassimurex (s. s.) calcitrapa (Lamarck, 1803). Red circles, unsuccessful drills.
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table 2. — Morphological and functional patterns of holes associated with gastropod and Octopus predation (modified from Gordillo et al. 2022).

Characteristic Pattern A Pattern B Pattern C

Shape A hole, round to oval Paired breaks A hole, rounded to irregular
Outline character Regular outline Irregular breakage Regular to irregular
Profile cross section Straight or sloping sides  

or parabolic outline
Random breakage Width and direction of hole vary  

with depth
Drill hole location Primarily Abapertural,  

dorsal to ventral
Unspecified Apertural, ventral to dorsal,  

parietal (left) 
Produced by Secretions of the ABO  

and rasping by the radula
Possible chemical softening  

and biting marks of upper  
and lower beaks

Secretion of salivary glands and 
rasping by radula and teeth of the 
papillary shield and terminal process

Potential predator Drilling gastropods Octopus Octopus
Present in this sampling Yes No No
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pattern A), but this is not so clearly defined in thinner shells 
and especially where there has been some diagenetic dissolu-
tion (Fig. 9G). The Figure 6D illustrates one of these holes 
in a thin, small specimen. In this case the hole is constrained 
to the intervarical area and appears to be Oichnos ovalis. The 
edges of this hole are well defined, lacking irregularity and 
the location of the drill hole is abapertural. 

Naticid versus muricid drill holes
Although it appears independently during their evolution, 
muricids and naticids share a similar drilling method. In 
muricids, the accessory boring organ (ABO), is withdrawn 
snugly within a sac in the mid-anterior part of the sole of the 
foot, and is everted only in operation. In naticids, it lies under 
the distal tip of the proboscis that, as in muricids, remains 
inverted within the cephalic hemocoele of the snail except when 
exploring, drilling, and feeding (Carriker & Yochelson 1968). 
However, the resulting holes are rather different between both 
families, and this allows them to be distinguished separately. 

The muricid hole is straight-sided or tapers slightly inwards, 
the outer parts may be ragged and irregular; a beveled rim is 
sometimes produced, but it is never as wide or pronounced 
as that of the naticids (Fretter & Graham 1962; Taylor 
1970). In addition, incomplete holes of naticids bear usu-
ally a characteristic central boss (Fretter & Graham 1962; 
Taylor 1970), whereas the bases of incomplete muricid 
holes are shallowly concave (Carriker 1969). The drill holes 
observed on the specimens of C. (s. s.) calcitrapa at La Ferme 
de l’Orme (unit 6) are round in contour (with one excep-
tion discussed above). Except for an eroded specimen they 
have crisp, unbeveled edges, are straight sided, and some 
show irregular breakage of the final shelf and thus indicate 
a muricid origin. Incomplete holes are shallowly concave as 
described by Carriker (1969), see Figure 6M, N.

stratiGraphiC appearanCe of muriCiD Drill holes  
anD moDern Cases of Cannibalism

Muricid gastropods are a very rich family of predatory snails, 
comprising more than 1 700 living species (Houart 2018) and 
1 200 fossil Cenozoic species (Merle et al. 2011, 2022). The 
oldest indisputable Cretaceous muricid is Flexopteron cretaceous 
(Garvie, 1991) from the Maastrichtian formation of Kemp 
Clay (Texas, United States, Garvie 1991). The Paleogene period 
represents a rapid growth phase for the familial diversification 
with the appearance of around 330 species (Merle 1999), the 
earliest members of the twelve accepted subfamilies (Merle 
et al. 2022), and the colonization of various environments 
from shallow to deep waters. Evidence of muricid drill holes 
are known since the Ypresian from the Paris and Aquitaine 
Basins (personal observations DM). Concerning the Paris Basin, 
Taylor (1970) suspected that Timbellus crenulatus  tricarinatus 
(Lamarck, 1803) and Eofavartia frondosa (Lamarck, 1803) 
were potential drillers of straight-sided holes observed in the 
middle Lutetian assemblages of Damery (Marne, France). 
Crassimurex (s. s.) calcitrapa is now added to the list of Lutetian 
drillers. This evidence shows that the ability to drill shells for 
food is ancient for this family and suggests the hypothesis that 
individuals were able to drill shells of intraspecific congeners 
from the early Paleogene. 

According to Gordillo (2013), research on cannibalism in 
fossil muricid gastropods is extremely scarce. From the Late 
Oligocene of Hungary (Chattian), Dávid (1997) noted that 
muricid borings can be observed on the shells of muricid 
gastropods, but it is not possible to prove that these borings 
are intraspecific predation, because several species are impli-
cated. Paine (1966) reported cases with Chicoreus (s. s.) ramo
sus (Linnaeus, 1758) from the Holocene of the Red Sea and 
Spanier (1986) and Rilov et al. (2004) reported cases with 
Hexaplex (Trunculariopsis) trunculus (Linnaeus, 1758) from the 

fig. 9. — Comparison between drill holes made by octopids (A-E) and drill holes made by Crassimurex (s. s.) calcitrapa (Lamarck, 1803) (F-I): A1, B-E, plan 
view of holes drilled by octopids; A2, mold of an octopid drill hole showing the variable path through the shell; A1, A2, drill hole made by the extant Octopus 
vulgaris Cuvier, 1797; B-E, drill holes made by octopids from the upper Campanian of Meade (South Dakota) on a specimen (AMNH 99175) of Nymphalucina 
occidentalis (Morton, 1842), F, Serratocerithium denticulatum (Lamarck, 1804) (Goldstein coll.); G-I, C. (s. s.) calcitrapa: G, MNHN.F.A9120; H, MNHN.F.A91214; 
I, MNHN.F.A91211. Credits: A1, A2, Arnold & Arnold (1969) slightly modified; B-E, Klompmaker & Landman (2021: fig. 1) slightly modified; F, D. Goldstein; 
G-L, L. Cazes (MNHN/CNRS). Scale bars: A-E, H-I, 1 mm; F, G, 0.5 mm.
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Holocene of the Mediterranean Sea (Israel). Gordillo (2013) 
reported cases with Trophon geversianus (Pallas, 1774) from 
the Holocene of South America (Beagle Channel). 

Carriker (1955) and noted that cannibalism occurred among 
living Urosalpinx cinerea (Say, 1822) of all ages in the presence 
of other prey both in the field and in confinement. Pope (1911) 
reported that in one observation, 100 newly hatched drills 
hatched in captivity were reduced to 36. However,  Nelson 
(1922) doubted that such extreme cannibalism occurs in 
nature, since drills do not all hatch simultaneously and tend 
to scatter. Stauber (1943) also detected cannibalism among 
recently hatched drills in aquaria, but with an amount fewer 
than the extremes reported by Pope. Pope (1911), Haskin 
(1935), Galtsoff et al. (1937), Stauber (1943), and Flower 
(1954) reported cannibalism among adult drills in both the 
laboratory and in the field. Flower (1954) during a series of 
dredgings in the lower Delaware Bay (United States) collected 
bottom material retained on a 1/4 × 3 (= 0.64 × 7 cm) inch 
mesh screen. In this material he counted 937 dead drills and 
76 of these had been drilled by other Urosalpinx Stimpson, 
1865 and Eupleura Adams, 1853.

CharaCteristiCs of the Cannibalism behavior  
of Crassimurex (s. s.) CalCitrapa

Our results reveal three characteristics of the cannibalistic 
behavior of C. (s. s.) calcitrapa: 1) it is not uncommon and 
affects about 10.61% of individuals; 2) predation is directed 
primarily towards juveniles (preferentially class 0-7 mm); 
the decrease in the number of holes above 7 mm in height 
corresponds to a thickening of the shell (coarser cords and 
cord spines) during the growth forming armor and making 
predation more difficult; and 3) hole location selection is 
clearly oriented towards the weak points of the shell. This 
is consistent to a global selection of drilling sites that is well 
oriented to the weak points of the shell and maximizes chances 
of successful predation.

The strategy of preferentially selecting juvenile prey and 
precise hole locations suggests that the predators have sought 
to maximize their chances of success and lower their risk of 
a dangerous interaction. In addition, the presence of multi-
ple drill holes in three specimens and the 10.61% predation 
rate on vulnerable specimens suggest that this conspecific 
predation is probably more than simply a matter of using an 
available resource. Carriker (1981) noted that in cases where 
a muricid was interrupted during the drilling process, it often 
went back to the same hole to continue drilling. Muricids 
moreover, have been known to attack their prey in groups 
(Belding 1910; Carriker 1981; Kelley 1991).

Finally, we propose that the attacks on juveniles by adult 
C. (s. s.) calcitrapa may meet criteria of an intense competi-
tion or an opportunist behavior for limited food resources. 
This falls under the concept of density dependent cannibal-
ism (Paine 1965) which has been demonstrated in labora-
tory conditions with the modern muricid, Rapana venosa 
(Valenciennes, 1846) (Yu et al. 2018). This hypothesis is 
consistent with the presence of the species in the assemblage 
of Potamides lapidorum, batillariids and bivalves indicative of 

intertidal facies. This type of facies is accompanied by many 
environmental stressors related to tides and emersion, such 
as desiccation, high temperatures, salinity fluctuations, ultra-
violet (UV) radiation and wave disturbance. Because of these 
stressors, the mortality rate can be high and the search for 
food more difficult. It is highly notable that Chattopadhyay 
et al. (2016), working with material from a bed deposited in 
an open embayment to offshore environment at la Ferme de 
l’Orme, by comparison, found a 0% predation rate. The sudden 
addition of cohorts of hatchlings and juveniles simultaneously 
adds a food resource for conspecifics, but also puts pressure 
on what was likely a minimally adequate food supply. Such 
conditions represent factors that can promote opportunistic 
behaviors such as occasional cannibalism.

CONCLUSION

Cases of cannibalism in fossil muricid gastropods are extremely 
scarce and are only reported in the Holocene from the Red 
Sea (Paine 1966), Mediterranean Sea (Spanier 1986; Rilov 
et al. 2004) and South America, Tierra de Fuego (Gordillo 
2013). This case of muricid cannibalism in Crassimurex (s. s.) 
calcitrapa dates back to about 45 million years (Lutetian, 
Eocene), a period corresponding to the beginning of the 
diversification of the family (Merle et al. 2011). It shows that 
behaviors such as predation on juveniles, selection of weak 
parts of the shell or multiple perforations on the same prey 
are similar to cases in the Quaternary (Paine 1966; Rilov et al. 
2004; Gordillo 2013) and today (Pope 1911; Haskin 1935; 
Galtsoff et al. 1937; Stauber 1943; Flower 1954;  Carriker 
1955). Cannibalistic behaviors are thus likely already in 
place as early as middle Eocene. However, the conditions 
leading to cannibalistic behavior are difficult to precisely 
determine. Cannibalism in gastropods has been attributed to 
many factors including energy maximization or the selective 
utilization of available resources (Kitchell et al. 1981; Kelley 
1991;  Chattopadhyay et al. 2014), the lack of alternate prey 
(Stanton & Nelson 1980; Spanier 1986) or the influence of 
ontogenic stage (Zlotnik 2001; Chattopadhyay et al. 2014).

One limitation of cannibalism is the risk of injury or death 
from attacking a larger conspecific (Dietl & Alexander 2000; 
Kelley & Hansen 2007). In the present case, we propose that 
the natural challenges of the subtidal brackish environment 
and additional hatchlings increasing the competition for 
resources are contributing factors. This hypothesis requires 
further study. To demonstrate that the cannibalism is more 
than a simple case of utilizing an available food source, we 
will need to quantify the predation pressures on the prey 
species of C. (s. s.) calcitrapa, and characterize the pattern of 
predation on the prey species. In doing so we would need 
to show whether there is direct competition for prey within 
and between the juveniles and adults, and that the predation 
pressure on the conspecifics is at a higher level than can be 
explained by mere food source utilization. A preliminary study, 
in progress, of multiple attacks on two of the most common 
prey species, Vicinocerithium calcitrapoides and Serratocerithium 
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denticulatum, indicates that juveniles and adults attack these 
larger prey species simultaneously. The study of other brack-
ish facies characterized by assemblages containing few species 
and only one predator among the muricid family can be a 
good way to highlight other cases and further document the 
repeated occurrence of this behavior during the Cenozoic.
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