The scorpions from the Mitaraka Massif in French Guiana (Scorpiones: Buthidae, Chactidae)
Aerial view of the Massif of Mitaraka in French Guiana (photo: Xavier Desmier). In medallion: Guyanochactas touroulti n. sp., ♀ holotype habitus.
The scorpions from the Mitaraka Massif in French Guiana (Scorpiones: Buthidae, Chactidae)

Wilson R. LOURENÇO
Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, case postale 30, 57 rue Cuvier, F-75231 Paris cedex 05 (France) wilson.lourenco@mnhn.fr

Submitted on 20 September 2017 | Accepted on 4 December 2017 | Published on 23 July 2018

ABSTRACT
A synopsis is proposed for all scorpion species collected, up to present, in the Mitaraka Massif in French Guiana, a site located near to the borders of French Guiana, Brazil and Suriname. One new species, Guyanochactas touroulti n. sp. (Chactidae) is described. The description of the new species brings further evidence to the biogeographic pattern of distribution presented by some elements of the family Chactidae endemic to the Tepuys or the Inselberg formations of South America.

KEY WORDS
Scorpiones, French Guiana, Mitaraka Massif, Inselberg, endemism, new species.

KEY WORDS
Scorpiones, French Guiana, Mitaraka Massif, Inselberg, endemism, new species.

RÉSUMÉ
Les scorpions du massif du Mitaraka en Guyane (Scorpiones: Buthidae, Chactidae).
Un synopsis est proposé pour la totalité des espèces de scorpions collectés, jusqu’à présent, dans le massif du Mitaraka en Guyane, région située dans la zone frontalière entre la Guyane, le Brésil et le Suriname. Une nouvelle espèce, Guyanochactas touroulti n. sp. (Chactidae) est décrite. La description de la nouvelle espèce apporte un nouvel appui au modèle de distribution géographique présenté par certains éléments de la famille des Chactidae endémiques des régions des Tepuys ou des Inselbergs en Amérique du Sud.
INTRODUCTION

As outlined in recent publications (Lourenço 2016a, b), until the early 1980s the scorpion fauna of French Guiana did not particularly call the attention of experts, and the few publications devoted to this fauna were limited to isolated description (Simon 1877) or to monographic compilations (Kraepelin 1899; Mello-Leitão 1945). The first framework dedicated to the scorpion fauna of French Guiana was done by Lourenço (1983), who treated all the species known at that date. Many subsequent publications followed on the scorpion fauna of French Guiana, including some dealing with soil species (Lourenço 2012); however, very few studies were dedicated to the French Guiana Massifs represented by Inselbergs. One exception was the description of a new species of Ananteris Thorell, 1891 from the Haut Ouarimapan in the extreme southwest of this department (Lourenço 2001a). Even if the studies on the French Guiana scorpion fauna are far from being complete, this region appears as one of the ‘hot-spots’ for biodiversity in South America. The degree of endemism for the scorpion species present in the region can overpass 70% (Lourenço 1991, 2001b).

Previously to the scorpions recently collected by the ‘French Guiana Expedition, 2015’ (in study since 2016), two other specimens were collected in the South Mitaraka Massif, located on the borders of French Guiana, Brazil and Surinam, and entrusted to me by the late J.-M. Betsch. These rather small specimens were obtained with the use of extraction methods. One proved to be Ananteris sabineae Lourenço, 2001 whereas the recent study of the second specimen led to the description of a new genus and species, Spinochactas mitaraka Lourenço, 2016 belonging to the family Chactidae Pocock, 1893. The description of this new genus and species brought further evidence about the biogeographic patterns of distribution of some chactid groups which are confirmed as an endemic element present only in Massif formations of South America such as the Tepuys and Inselberg. In the present paper, a synopsis is proposed for all scorpion species collected, up to now, in the Mitaraka Massif in French Guiana (Figs 1, 2). Since most biogeographic aspects related to the region of Guianas and to the Tepuys and Inselberg formations have already been treated in detail by Lourenço (2016a, b), these will be only briefly summarised here.

MATERIAL AND METHODS

Measurements and illustrations were made using a Wild M5 stereo-microscope with a drawing tube (camera lucida) and an ocular micrometer. Measurements (in mm) follow Stahnke (1970), trichobothrial notations Vachon (1974), and morphological terminology Hjelle (1990). The totality of the material collected in the present (and previous) missions to the Mitaraka Massif are now deposited in the Muséum national d’Histoire naturelle (MNHN), Paris, France. For detailed illustrations on the species treated previously to this paper, see the publications indicated in the references.

TAXONOMIC RESULTS

Family Buthidae C. L. Koch, 1837
Genus Ananteris Thorell, 1891

Ananteris sabineae Lourenço, 2001

Ananteris polleti Lourenço, 2016

REMARC

Species described based on one female collected in a previous MNHN field-trip to the Mitaraka region (Lourenço 2001a). This species remains extremely rare and endemic to the region of the Mitaraka massif.

Ananteris polleti Lourenço, 2016

The scorpions from the Mitaraka Massif

♂ Holotype (02°13’59.1”N, 54°26’37.9”W), 433 m, tropical moist forest – in plateau, 2-8.III.2015 (M. Pollet). — ♂ paratype (02°14’17.8”N, 54°27’08.2”W), 352 m, tropical moist forest – in slope, 25.II-3.III.2015 (M. Pollet).

Remark

This species is apparently extremely rare and most certainly endemic to the Mitaraka Massif.

Species described on the basis of two adult males (Lourenço 2016b).

Genus Tityus C. L. Koch, 1836

Subgenus Archaeotityus Lourenço, 2006

Tityus (Archaeotityus) silvestris Pocock, 1897

Tityus silvestris Pocock, 1897: 363, 364.

Remark

This species was described by Pocock (1897) from the region of Santarém in Brazilian Amazonia. Subsequently it proved to be largely distributed all over French Guiana and the Amazon region. It presents a very high polymorphism for some morphometric characters (Lourenço 1988). It was recorded for several sites in French Guiana by Lourenço (1983), but the record for the Mitaraka region is new.

Subgenus Atreus Gervais, 1843

Tityus (Atreus) obscurus (Gervais, 1843) — *Scorpio (Atreus) obscurus* Gervais, 1843: 130.

Genus Brotoechactas Pocock, 1893

Brotoechactas delicatus (Karsch, 1879)

Chacta delicatius Karsch, 1879: 134.

Brotoechactas delicatius — Pocock 1893: 77.

Remark
This species is moderately common in French Guiana and was reported from a small number of sites (Lourenço 1983). The Mitaraka Massif represents a new record for the species.

Genus Guyanochactas Lourenço, 1998

Guyanochactas touroulti n. sp. (Figs 3-5)

Etymology. — Name honors Julien Touroult (MNHN) one of the organizers of the Field Expedition to the Mitaraka Massif.

Diagnosis. — Scorpion of moderate size, as the other species of the genus, with 36.4 mm in total length. Coloration dark brown to almost blackish. Carapace slightly emarginated. Body and appendages weakly granulated, with minute punctations. Ventral internal carina of pedipalp femur with spinoid granules; internal face of pedipalp chela granulated and with 2-3 spinoid granules. Pectines with 9-10 teeth in female holotype. Dentate margin of chela fingers with six rows of granules. Metasomal segments I and II wider than long; III as long as wide. Spiracles oval. Tarsi with two rows of spinoid setae. Trichobothrial pattern of type C neoboritoxisc ‘majorante’. Guyanochactas touroulti n. sp. can be distinguished from other species in the genus Guyanochactas and in particular from Guyanochactas gonzalezspongai (Lourenço, 1983) and Guyanochactas flavus Lourenço & Ythier, 2011, both also distributed in French Guiana, by the following features: 1) overall much darker coloration, almost totally blackish; 2) overall size smaller with only metasomal segments I-II wider than long; 3) smaller number of pectinal teeth; and 4) chela fingers with six rows of granules.

Description based on female holotype
Coloration
Basically dark brown to blackish. Prosoma: carapace dark brown to blackish with some slightly reddish zones on furrows; eyes blackish. Tergites dark brown to blackish, with confluent zones slightly reddish. Metasomal segments dark brown with blackish zones over carinae; telson reddish, darker ventrally; aculeus reddish at the base and blackish at the tip. Chelicerae yellowish with blackish variegated pigmentation; fingers and teeth blackish. Pedipalps dark brown to blackish; femur darker than patella and chela. Legs reddish-brown with darker spots. Venter: sternites, coxapophysis and sternum reddish-brown; pectines and genital operculum yellow to pale yellow.

Morphology
Carapace slightly emarginated, with minute granulations and punctations; furrows shallow. Median eyes largely anterior to the centre of the carapace, separated by a little more than one
oculardiameter; two pairs of lateral eyes, moderate in size. Sternumpentagonal, wider than long. Tergites acarinate, with only minute granulations and punctations. Pectinal tooth count 9-10 for holotype; fulcra vestigial. Stermites smooth and punctuated; spiracles oval in shape. Metasomal segments I to II wider than long; metasomal tegument with moderately marked granulations and a few punctuations; dorsal carinae strongly marked on all segments with spinoid granules; other carinae strongly marked on segments III-V, weaker on segments I-II; segment V with spinoid granulations ventrally. Telson elongated and weakly globular with strongly marked granulation ventrally; aculeous moderately elongated. Pedipalps: femur with dorsal internal, dorsal external and ventral internal carinae strongly marked; ventral internal carina with spinoid granules; ventral external carina weakly to moderately marked; all faces with minute granulations. Patella with minute granulations and punctations; dorsal internal, ventral internal, ventral external and external carinae weakly marked; other carinae vestigial. Chela with weakly marked carinae and a few granulations on internal aspect. Dentate margins on movable and fixed fingers with six rows of granules, separated by stronger accessory granules. Chelicerae moderately elongated with a denticulation typical of the family Chactidae (Vachon 1963), and with dense setation ventrally and internally. Trichobothriotaxy of type C; neobothriotaxic ’majorante’ (Vachon 1974). Tarsi with two rows of spinoid setae.

Morphometric values (in mm) of female holotype

Total length including telson, 36.4. Carapace: length, 5.1; anterior width, 3.2; posterior width, 5.2. Mesosoma length, 11.9. Metasomal segments. I: length, 2.0; width, 3.0; II: length, 2.3; width, 2.6; III: length, 2.4; width, 2.4; IV: length, 2.9; width, 2.3; V: length, 4.9; width, 2.1; depth, 1.7. Telson
Fig. 4. — Guyanochactas touroulti n. sp., ♀ holotype: A, chelicera, dorsal view; B, sternites IV-V showing spiracles; C, tarsi of leg IV showing the series of spines; D, metasomal segment V and telson, lateral view. Scale bars: 1 mm.
The scorpions from the Mitaraka

length, 4.9; width, 1.6; depth, 1.3. Pedipalp: femur length, 3.8, width, 1.7; patella length, 4.4, width, 1.8; chela length, 8.5, width, 2.8, depth, 2.9; movable finger length, 4.2.

Genus Hadrurochactas Pocock, 1893

Hadrurochactas sp.

REMARK
This Hadrurochactas specimen may represent a new species, however further material will be necessary for a final conclusion.

Genus Spinochactas Lourenço, 2016

Spinochactas mitaraka Lourenço, 2016

Spinochactas mitaraka Lourenço, 2016: 144-146.

MATERIAL EXAMINED. — French Guiana. ♀ holotype. Mitaraka Sud (640 m), 15.III.2001 (J.-M. Betsch leg.); collected by extraction together with the ♂ holotype specimen of Ananteris sabineae.

REMARK
This genus and species were previously described from the material collected during a previous mission of the Muséum in the region of the Mitaraka Massif.

BIOGEOGRAPHICAL COMMENTS

As already outlined in previous publications (Lourenço 2016b, c), tepuys are table-top mountains (mesas) found only in the Guyana highlands of South America and are quite distinct from Inselsbergs (from German ‘insel = island’ and ‘berg = mountain’), which are isolated rocky outcrops consisting generally of Precambrian granite or gneiss. The Mitaraka massif precisely corresponds to a typical Inselberg. According to Sarthou et al. (2003, 2010) the geomorphology and the geology of Inselsbergs have been studied worldwide, and a survey was provided for inselbergs in general (Bremer & Sander 2000). Contrary to the tepuys formations which are exclusively of the Guyana region, shaped inselbergs are scattered throughout Guyana and Brazilian Shields (up to East Bolivia). These outcrops rise abruptly from the surrounding plain landscape and represent singular habitats in tropical rain forests (Sarthou et al. 2003, 2010). Consequently, these formations represent clear habitat fragmentation and constitute functional terrestrial islands (Prance 1996) which contain rare endemic species,
in most cases due to isolation and particular environmental conditions (MacArthur & Wilson 1967; Sarthou et al. 2003). For more detailed information see Lourenço (2016b, c).

The study of the scorpions collected during the ‘Our Planet Reviewed’ Guyane-2015 expedition in the Mitaraka Massif was achieved by some positive results (Lourenço 2016b, c, this study). However, one cannot consider this survey as complete. In fact most scorpions found in the Mitaraka Massif were collected by random and/or empirical methods. No specific methodology, normally used to the collections of these animals was used (e.g., research with ultra-violet light). Consequently, new discoveries may yet be expected if future expeditions may take place in the region.

Acknowledgements

The material related to the new species was collected during the ‘Our Planet Reviewed’ Guyane-2015 expedition in the Mitaraka range, in the core area of the French Guiana Amazonian Park, organised by the MNHN and Pro-Natura International. The expedition was funded by the European Regional Development Fund (ERDF), the Conseil régional de Guyane, the Conseil général de Guyane, the Direction de l’Environnement, de l’Arménagement et du Logement and by the ministère de l’Éducation nationale, de l’Enseignement supérieur et de la Recherche. It was carried out in collaboration with the Parc amazonien de Guyane and the Société entomologique Antilles-Guyane. My thanks go also to Lucienne Willmé (Missouri Botanical Garden, Madagascar) for the preparation of the map (Fig. 1), to Xavier Desmier for permission to use one of his photos of Mitaraka Massif (Fig. 2) and finally to Élise-Anne Leguin (MNHN) for the preparation of the photos and plates of the new species.

REFERENCES

Submitted on 20 September 2017; accepted on 4 December 2017; published on 23 July 2018.