Mushroom corals (Scleractinia, Fungiidae) of Espiritu Santo (Vanuatu, West Pacific), with the description of a new species

Bert W. HOEKSEMA
Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, P.O. Box 9517, 2300 RA Leiden (The Netherlands)
bert.hoeksema@ncbnaturalis.nl

ABSTRACT
A total of 35 mushroom coral species (Scleractinia, Fungiidae) was recorded at the southeastern coast of Espiritu Santo, northern Vanuatu, during the SANTO 2006 expedition. One species, Sandalolitha boucheti n. sp., is described as new to science. It can be distinguished from its congeners by dense and thin septa, fine serrated septal dentations, evenly distributed stomata, and a light brown colour. The present species number is distinctly higher than previous records and suggests that northern Vanuatu, Espiritu Santo in particular, should be included in the so-called Coral Triangle, the Indo-West Pacific centre of maximum marine biodiversity, which would require an extension of this area in southeastward direction.

KEY WORDS
Cnidaria, Anthozoa, Hexacorallia, Scleractinia, Fungiidae, Vanuatu, Espiritu Santo, Coral Triangle, new species.

MOTS CLÉS

RÉSUMÉ
Coraux champignons (Scleractinia, Fungiidae) d’Espiritu Santo (Vanuatu, Pacifique ouest), avec la description d’une nouvelle espèce.
Un total de 35 espèces de coraux champignons (Scleractinia, Fungiidae) a été rapporté de la côte sud-est d’Espiritu Santo, au nord du Vanuatu, pendant l’expédition SANTO 2006. Une de ces espèces, Sandalolitha boucheti n. sp., nouvelle pour la science, est décrite ici. Elle se distingue de ses congénères par des septa nombreux et fins, des indentations septales finement serrulées, des stomates distribués régulièrement et une coloration brun clair. Le nombre d’espèces est bien plus grand que ce qui a été précédemment rapporté, ce qui suggère que le nord du Vanuatu, et plus particulièrement Espiritu Santo, devrait être inclus dans ce que l’on appelle le Triangle du corail – le centre du bassin Indo-Pacifique qui possède une biodiversité marine maximale —, et donc que cette zone doit être agrandie en direction du sud-est.

Owing to their mobility, free-living mushroom corals inhabit various kinds of substrates. They can be found in a range of reef environments, from shallow reef flats to deep sandy reef bases and from reefs near river mouths to offshore oceanic reefs (e.g., Hoeksema & Moka 1989; Cleary et al. 2005; Becking et al. 2006; Hoeksema 2012). Because they are relatively common reef-dwellers and easy to spot, mushroom corals constitute a suitable model group as a proxy for assessing species richness in biodiversity surveys. At present 50 Fungiidae are recognised, which form a monophyletic taxon (Gittenberger et al. 2011). In biodiversity studies, they have additional value as host corals of many associated species, such as molluscs, crabs, shrimps and fish (Bos 2011; Hoeksema & Fransen 2011; Hoeksema & Gittenberger 2011; Hoeksema et al. 2012).

The present study deals with the mushroom coral fauna of Vanuatu, in particular the southeastern part of Espiritu Santo, which was surveyed during the SANTO 2006 expedition (Bouchet et al. 2011). Previous knowledge on the mushroom coral fauna of Vanuatu, West Pacific, was based on a few old studies, including a taxonomic revision of the Fungiidae (Hoeksema 1989) and reports on the scleractinian corals of Vanuatu (Veron 1990a, b). This resulted in a preliminary species number of 20 (Table 1) out of a total of 50 (Gittenberger et al. 2011). The fieldwork reported in the present study specifically dealt with mushroom corals of Santo in order to obtain a better overview of which fungiid species are present or absent, which resulted in a new total of 35 mushroom coral species. This will allow a comparison with results from areas in the so-called Coral Triangle, the centre of maximum marine species diversity (Hoeksema 2007; Veron et al. 2009, 2011) with a total of 46 known species (Hoeksema unpubl.), and from New Caledonia (see Pichon 2006), a neighbouring area that so far has not been considered part of this marine biodiversity centre (Veron et al. 2011).

INTRODUCTION

Mushroom corals (Scleractinia Bourne, 1900, Fungiidae Dana, 1846) are stony reef corals. Because of their striking appearance, they are well known from coral reefs across the tropical Indo-Pacific (Hoeksema 1989). Most species have a free-living adult stage in their life cycle after becoming detached from a stalk (Hoeksema & Yeemin 2011). A few others have lost this ability and remain attached to a hard substrate (Hoeksema 1989, 2009). They are generally common reef-dwellers and in various reef areas free-living species have been observed to form dense aggregations of mixed or single species, depending on their
Table 1. — Mushroom coral species and their occurrence recorded from 25 sites during the SANTO 2006 expedition. One species (*) was observed at another SANTO 2006 site. Earlier records from Vanuatu are referenced as well as some other West Pacific areas, New Caledonia and Madang (Bismarck Sea, Papua New Guinea): [1], Hoeksema (1989); [2], Veron (1990a, b); [3], Laboute & Richer de Forges (2004); [4], Pichon (2006); [5], Hoeksema (1993a). Notes: (1), As *Fungia* (*Ctenactis*) *simplex* (Gardiner, 1905); (2), as *Cycloseris patelliformis* (Boschma, 1923); (3), maybe partly as *Lithophyllon undulatum* Rehberg, 1892; (4), also as *Fungia* (*Danafungia*) valida Verrill, 1864, and *F. (D.) kunzingeri* Döderlein, 1901; (5), as *Fungia (D.) danai* Milne Edwards & Haimre, 1851; (6), possibly as *Fungia* (*Verillofungia*) sp.; (7), as *Podabacia* sp.; (8), as *Ctenactis echinata*; (9), as *Cycloseris patelliformis* and *Diaseris distorta*; (10), as *Cycloseris cyclolites*; (11), record based on re-examined collection material and photographs.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of dive sites, SANTO 2006</th>
<th>Earlier records Vanuatu</th>
<th>New Caledonia Sea</th>
<th>Madang Bismarck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctenactis crassa (Dana, 1846)</td>
<td>17</td>
<td>[2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris curvata (Hoeksema, 1989)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cycloseris cyclolites (Lamarck, 1815)</td>
<td>1*</td>
<td>–</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris distorta (Michelin, 1842)</td>
<td>–</td>
<td>–</td>
<td>[4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris fragilis (Alcock, 1893)</td>
<td>4</td>
<td>[2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris hexagonalis (Milne Edwards & Haimre, 1848)</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris sinensis Milne Edwards & Haimre, 1851</td>
<td>7</td>
<td>–</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris somervillei (Gardiner, 1909)</td>
<td>2</td>
<td>–</td>
<td>[3]</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris tenuis (Dana, 1846)</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>[5]</td>
</tr>
<tr>
<td>Cycloseris sp.</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>[5]</td>
</tr>
<tr>
<td>Danafungia horrida (Dana, 1846)</td>
<td>15</td>
<td>[1, 2]</td>
<td>[4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Fungia fungites (Linnaeus, 1758)</td>
<td>24</td>
<td>[1, 2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Halomitra clavator Hoeksema, 1889</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Heliofungia actiniformis (Quoy & Gaimard, 1833)</td>
<td>5</td>
<td>[1]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Heliofungia frailae (Nemenzo, 1955)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>[5]</td>
</tr>
<tr>
<td>Herpolitha limax (Esper, 1797)</td>
<td>23</td>
<td>[1, 2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Lithophyllon concinna (Verrill, 1864)</td>
<td>18</td>
<td>[2]</td>
<td>[4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Lithophyllon repanda (Dana, 1846)</td>
<td>22</td>
<td>[2]</td>
<td>[4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Lobactis scutaria (Lamarck, 1801)</td>
<td>12</td>
<td>[2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Podabacia crustacea (Pallas, 1766)</td>
<td>3</td>
<td>[2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Polypyllia novaehiberniae (Lesson, 1831)</td>
<td>16</td>
<td>[1, 2]</td>
<td>[4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Polypyllia talpina (Lamarck, 1801)</td>
<td>15</td>
<td>–</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
<tr>
<td>Sandalolitha boucheti n. sp.</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sandalolitha dentata Quelch, 1884</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sandalolitha robusta (Quelch, 1886)</td>
<td>22</td>
<td>[2]</td>
<td>[3, 4]</td>
<td>[5]</td>
</tr>
</tbody>
</table>

Total of species 35 20 31 40
MATERIAL AND METHODS

Mushroom coral species were recorded during the SANTO 2006 expedition in the vicinity of the base camp at Luganville in the southeastern coastal area of Espiritu Santo (Fig. 1; for detailed map, see Bouchet et al. 2009). The corals were surveyed during 25 dives (0-35 m deep) in a time span of 15 days (September 2006). Identifications were based on a taxonomic revision of the Fungiidae (Hoeksema 1989) and subsequent descriptions of species mentioned by Hoeksema (1993), all of which are listed with a phylogenetically adapted classification by Gittenberger et al. (2011). Two coral species that belong to the Fungiidae according to molecular studies, but which are still classified with the Siderastreidae (Benzoni et al. 2007), have not been included in the present study, i.e. *Cycloseris explanulata* (Van der Horst, 1922) and *C. wellsi* (Veron and Pichon, 1980). Formally they did not yet belong to the Fungiidae during the expedition and therefore they were not recorded. Meanwhile their formal status as Fungiidae will be corrected (Benzoni et al. in press). Material has been deposited in the coral collection of the Netherlands Centre of Biodiversity Naturalis with catalogue numbers RMNH Coel.

![Species richness analysis of the mushroom coral fauna of Espiritu Santo with the help of EstimateS 8.2.0.](image)

Fig. 2. — Species richness analysis of the mushroom coral fauna of Espiritu Santo with the help of EstimateS 8.2.0. (Colwell 2009): Chao2 is an incidence-based species richness estimator; ICE is an Incidence-based Coverage Estimator; S observed represents the recorded species numbers; and Unique values indicate species only encountered once.

![Cantharellus jebbi Hoeksema, 1993](image)

Fig. 3. — *Cantharellus jebbi* Hoeksema, 1993 (RMNH Coel. 40129) from Vanuatu, Espiritu Santo, SE coast, NE Aoré Island, N Aimbuéi Bay: A, upper surface; B, lower surface showing attachment area. Scale bars: 1 cm.
The mushroom coral fauna was analysed for species richness with the help of EstimateS 8.2.0 (Colwell 2009). The species richness estimators resulting from the analysis are presented as species accumulation curves in which the sample order has been randomised and the values have been averaged (means and standard deviations are given per sample number). They are extrapolated to indicate total species richness (observed and expected). A reliable measure for species richness is obtained when the curves of the species richness estimators become asymptotic (the mean values flatten out), minimal standard deviations are obtained (approaching or reaching 0), and observed and expected values become equal. The used species richness indicators based on incidence (presence/absence) data are: 1) Chao2 (an incidence-based species

![Image of mushroom corals](image1.png)

Fig. 4. — Mushroom corals from Vanuatu, Espiritu Santo, SE coast, Coolridge wreck. **A**, *Cycloseris costulata* (Ortmann, 1889) (RMNH Coel. 40134) with coral gall crab pits; **B**, *Cycloseris mokai* (Hoeksema, 1989) (RMNH Coel. 40130). Scale bars: 1 cm.

![Image of mushroom corals](image2.png)

Fig. 5. — *Cycloseris somervillei* (Gardiner, 1909) (RMNH Coel. 40133) from Vanuatu, Espiritu Santo, SE coast, S Aoré Island, Bruat channel, N Perumamasa Island: **A**, upper surface; **B**, lower surface. Scale bars: 1 cm.
Fig. 6. — Mushroom corals from Vanuatu, Espiritu Santo, SE coast: A, *Cycloseris hexagonalis* (Milne Edwards & Haime, 1848) (RMNH Coel. 40132) S Aoré Island, Bruat Channel; B, *Zoopilus echinatus* Dana, 1846 (RMNH Coel. 40136) N Tutuba Island. Scale bars: 1 cm.

Fig. 7. — *Ctenactis albitentaculata* Hoeksema, 1989 (RMNH Coel. 40128) from Vanuatu, Espiritu Santo, SE coast, E Aoré Island, Alsari Bay, SE Bukora Point. Scale bar: 1 cm.
which has finer septa and a higher concentration of stomata (Fig. 4B). For both of these species, and for the newly recorded *C. hexagonalis* (Fig. 6A) and *Sandalolitha boucheti* n. sp. (Figs 11-14), Vanuatu is the southeasternmost known locality to date. Other new records for Vanuatu concern *Cycloseris costulata* (Fig. 4A), *C. cyclolites*, *C. sinensis*, *C. somervillei* (Fig. 5), *C. tenuis*, *C. vaughani*, *Cycloseris* sp., *Ctenactis albitentaculata* (Fig. 7), *Halomitra pileus*, *Lithophyllon spinifer* (Fig. 8), *Pleuractis gravis* (Fig 9) and *P. moluccensis* (Fig. 10). *Zoopilus echinatus*, which also has its southeasternmost distribution limit at Espiritu Santo, was encountered as large free-living corals and as small juveniles with fresh detachment scars (Fig. 6B).

Descriptions of 33 species occurring in Vanuatu are given by Hoeksema (1989, 1993a). Two species are new to science, one of which, *Sandalolitha boucheti* n. sp., is described here. Its characters are described in a similar way as those of the two other *Sandalolitha* species, *S. robusta* and *S. dentata*, in order to facilitate comparisons (see Hoeksema 1989). The other one, a relatively widespread, small, and free-living *Cycloseris* species, will be described in a subsequent paper.

![Fig. 8. — Lithophyllon spinifer (Claereboudt & Hoeksema, 1987) (RMNH Coel. 40127) from Vanuatu, Espiritu Santo, SE coast, Coolridge wreck: A, upper surface; B, lower surface. Scale bars: 1 cm.](image)
SYSTEMATICS

Order **SCLERACTINIA** Bourne, 1900
Family **Fungiidae** Dana, 1846
Genus **Sandalolitha** Quelch, 1884

Sandalolitha boucheti n. sp.

Type Material. — Holotype: SANTO 2006, stn FR8, Vanuatu, Espiritu Santo, SE coast, E Aoré Island, S Aïmbuéi Bay, 15°19'53.4"S, 167°07'26.5"E, depth 8 m, 19.IX.2006, B. W. Hoeksema (RMNH Coel. 40126; Fig. 12).
Paratype: SANTO 2006, stn FR20, Vanuatu, Espiritu Santo, SE coast, E Aoré Island, S Aïmbuéi Bay, 15°19'53.4"S, 167°07'26.5"E, depth 8 m, 19.IX.2006, B. W. Hoeksema (RMNH Coel. 40126; Fig. 12).

Other Material. — Malaysia, eastern Sabah, Semporna area, Ligitan Reef 1, South, Yoshi Point, 4°14'05.8"N, 118°33'26.7"E, depth 15 m, 1.XII.2010, B. W. Hoeksema, (RMNH Coel. 39964; Figs 13; 14).

Type Locality. — Vanuatu, Espiritu Santo.

Geographical Distribution. — *Sandalolitha boucheti* n. sp. is so far only known from Vanuatu (West Pacific) and northeastern Borneo (Sulawesi Sea).

Etymology. — Named after Prof. Philippe Bouchet, leader of the marine component of the SANTO 2006 expedition.
Mushroom corals of Espiritu Santo

Stomata more or less evenly distributed over the coral surface. Columellae poorly developed, consisting of rudimentary trabeculae. Corallum wall perforated, covered by granulations and without fragmentation clefts. Large detachment scar (diameter 1.0-2.8 cm) distinct (Fig. 13C). Costae unequal in thickness and height, straight and distinct near the corallum margin, but less distinct near the centre; coarsely ornamented with echinous spines, varying from 15 to 30 per cm (Fig. 11C). Living animal light brown (Fig. 14). Small tentacles colourless and translucent.

Remarks

Morphologically *S. boucheti* n. sp. shares some characters with either one of the other two *Sandalolitha* species, *S. robusta* and *S. dentata* (Table 2). With regard to stomata distribution, it resembles *S. robusta* by showing more or less evenly distributed stomata over the upper surface, while *S. dentata* has most stomata concentrated at the centre. With *S. dentata* it shares serrate septal dentations, while those of *S. robusta* are more lobate.
Both type specimens show an oval shape, which is also common in *S. dentata*. However, compared to both other *Sandalolitha* species, it has finer septal and costal ornamentations and thinner septa and costae, which appear to be more densely arranged than in the other two species. *S. boucheti* n. sp. also differs from the other two species by being light brown in colour and from *S. dentata* in particular by lacking patches of green (see Hoeksema & Van Ofwegen 2004). *S. dentata* was not recorded at Vanuatu (Table 1).
DISCUSSION

Although 35 mushroom coral species were recorded during the SANTO 2006 expedition (plus one extra observed by Veron [1990a, b], resulting in a total of 36), it is possible that some other species were overlooked as indicated by the species richness analysis (Fig. 2). In earlier reports (Veron 1990a, b),
23 species were mentioned from Vanuatu (Table 1), some of which are synonyms according to Hoeksema (1989). Another species, *Heliofungia actiniformis*, was recorded by Hoeksema (1989). *Lithophyllum undulatum* was listed by Veron (1990a, b) but it was not found during the SANTO 2006 expedition. This implies that only 20 fungiid species were observed during previous studies, all of which except one, *L. undulatum*, were also observed during the present survey. At least 14 of the presently listed species represent new records (Table 1). Two species that recently became recognised as Fungiidae, *Cycloseris explanulata* and *C. wellsi* (see Benzoni et al. 2007, in press) were not recorded during the present study and also not during earlier surveys of the scleractinian fauna of Vanuatu (Veron 1990a, b).

With regard to reef corals, Vanuatu is not considered part of the Coral Triangle (Veron et al. 2009, 2011), which may be based on the species lists presented by Veron (2009a, b). The ahermatypic (azoxyanthellate) coral fauna of Vanuatu is also not considered rich enough to be part of the centre of diversity (Cairns 1999, 2007). However, the presently reported increase in the known number of mushroom coral species of Vanuatu, suggests that the number of all reef coral species (*n* = 296) at Vanuatu (Veron 1990a, b) should also be higher in proportion. The present mushroom coral data

Table 2. — Characters of three *Sandalolitha* species (compare Hoeksema 1989).

<table>
<thead>
<tr>
<th>Character</th>
<th>S. dentata Quelch, 1884</th>
<th>S. robusta (Quelch, 1886)</th>
<th>S. boucheti n. sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of stomata concentrated at corallum centre or evenly distributed</td>
<td>concentrated</td>
<td>even</td>
<td>even</td>
</tr>
<tr>
<td>Septal dentations serrate or lobate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septa alternating or of nearly similar height</td>
<td>alternating</td>
<td>alternating</td>
<td>serrate</td>
</tr>
<tr>
<td>Septa and costae loosely packed or dense</td>
<td>loose</td>
<td>loose</td>
<td>dense</td>
</tr>
<tr>
<td>Density of septal teeth (per cm²)</td>
<td>8-25</td>
<td>14-25</td>
<td>15-30</td>
</tr>
</tbody>
</table>

Fig. 13. — Specimen of *Sandalolitha boucheti* n. sp. (RMNH Coel. 39964) from Malaysia, eastern Sabah: A, upper surface; B, lower surface with large detachment scar. Scale bars: 1 cm.
suggest that the centre of mushroom coral diversity (Hoeksema 2007) should have a southeastward extension, including Espiritu Santo and adjacent parts of Vanuatu (Hoeksema & Gittenberger 2011). Compared to the Bismarck Sea with 40 species, Vanuatu is less rich in fungiid species (Hoeksema 1993a; Table 1) but in relation to New Caledonia with 31 species, which is located to the south, its species number is higher (Pichon 2006; Table 1). The number of 36 mushroom coral species in Vanuatu is higher than the 28-30 recorded in some Coral Triangle areas (Hoeksema 2007; Hoeksema & Gittenberger 2011). Therefore Vanuatu’s scleractinian fauna is expected to be rich enough to be considered part of centre of mushroom coral diversity and New Caledonia may also fit in with its present record of 31 funguids. The southeastward extension of this centre may be explained by oceanic currents branching off from the South Equatorial Current (SEC), which have transported larvae of the coral species present here (see Hoeksema 2007).

Coral reef biota in the proximity of large cities may change within several decades of time as a result of human impact (Van der Meij et al. 2009, 2010; Hoeksema & Koh 2009; Hoeksema et al. 2011). The human population of Vanuatu is not large and therefore it is unlikely that the mushroom coral fauna observed in 2006 has declined since the previous survey by Veron in 1988 (1990a, b). The only threat mentioned for mushroom corals is collecting for the curio trade, which is not mentioned to affect Vanuatu’s coral fauna (Amos 2006).

The discovery of a new species during SANTO 2006 was not a unique happening. Since a recent taxonomic revision of the Fungiidae (Hoeksema 1989) various other mushroom coral species were reported as new to science (Veron 1990c, 2000; Hoeksema & Dai 1991; Hoeksema 1993a, b, 2009; Ditlev 2003). *Sandalolitha boucheti* n. sp. is also not the only new marine species recorded as a result of SANTO 2006, since other new species were discovered from coral reefs and from anhialine, brackish, subtidal, and deep waters (Bamber 2009; Lane & Rowe 2009; Mcpherson 2009, 2012; Neusser & Schrödl 2009; Weint et al. 2009; Boxshall & Jaume 2012; McLean 2012; Séret & Last 2012). All these new discoveries together confirm that expeditions to poorly investigated regions, such as Espiritu Santo, are indispensable for a good understanding of the marine realm and its species diversity patterns.

Acknowledgements

The SANTO 2006 expedition was organised by the Muséum national d’Histoire naturelle, Paris (MNHN), Pro-Natura International (PNI), and Institut de Recherche pour le Développement (IRD). It operated under a permit granted to Philippe Bouchet (MNHN) by the Environment Unit of the Government of Vanuatu. The Marine Biodiversity part of the expedition, a part of Census of Marine Life’s CReefs programme, was specifically funded by grants from the Total Foundation and the Sloan Foundation. Philippe Bouchet (MNHN) allowed me to participate in SANTO 2006. Arjan Gittenberger (NCB Naturalis, Leiden) and Eric Folcher (IRD, Nouméa) acted as dive buddies and assisted in collecting. Zarinah Waheed assisted in making the photographs. I am grateful to three reviewers for their constructive remarks, which definitely improved the manuscript, F. Benzoni, A. Ohler and an anonymous referee.
REFERENCES

HOEKSEMA B. W. & KOH E. G. L. 2009. — Depauperation of the mushroom coral fauna (Fungiidae) of Singapore
Mushroom corals of Espiritu Santo

Submitted on 23 November 2011; accepted on 11 May 2012.

(ZOOSYSTEMA • 2012 • 34 (2))

