Correlation of the early Albian-late Turonian radiolarian biozonation with planktonic and agglutinated foraminifera zonations in the Pieniny Klippen Belt (Polish Carpathians)

Marta BĄK
Institute of Geological Sciences, Jagiellonian University,
Oleandry 2a, 30-063 Kraków (Poland)
bak@ing.uj.edu.pl

Krzysztof BĄK
Institute of Geography, Cracow Pedagogical University,
Podchorążych 2, 30-084 Kraków (Poland)
kbak@cyf-kr.edu.pl

KEYWORDS
Cretaceous,
Radiolaria,
Foraminifera,
integrated biostratigraphy,
Pieniny Klippen Belt,
Carpathians.

ABSTRACT
Marine pelagic deposits of the lower Albian to upper Turonian interval in the Polish part of the Pieniny Klippen Belt are relatively rich in radiolarian fauna as well as in planktonic and agglutinated foraminifera. The proposed radiolarian zones (Holocryptocanium barbui, Hemicryptocapsa prepolyhedra and Hemicryptocapsa polyhedra) have been correlated with planktonic foraminifera biozonation (from Ticinella primula to Dicarinella primitiva zones), and with agglutinated foraminifera biozonation (from Haplophragmoides nonioninoides to Uvigerinammina ex gr. jankoi zones).

RÉSUMÉ
Corrélation des biozones à radiolaires de l'Albien inférieur-Turonien supérieur avec celles à foraminifères planctoniques et agglutinés dans la région des klippes piénines (Carpathes polonaises).
Les dépôts marins pélagiques de l'Albien inférieur-Turonien supérieur de la zone des klippes piénines sont relativement riches en faune de radiolaires, ainsi que de foraminifères planctoniques et agglutinés. Les zones de radiolaires proposées (Holocryptocanium barbui, Hemicryptocapsa prepolyhedra et Hemicryptocapsa polyhedra) sont en corrélation directe avec les biozones de foraminifères planctoniques (de la zone Ticinella primula à la zone Dicarinella primitiva) et celles des foraminifères agglutinés (de la zone Haplophragmoides nonioninoides à la zone Uvigerinammina ex gr. jankoi).
INTRODUCTION

Detailed micropalaeontological studies of marine pelagic Cretaceous deposits have been carried out in the Pieniny Klippen Belt during the last 15 years. A part of these concerned biostratigraphy, based on different groups of microfauna: foraminifera (Birkenmajer & Jednorowska 1987; Gasinski 1988; Kostka 1993; K. Bąk 1998), nannoplankton (Dudziak 1985), dinocysts (Jamiński 1990) and radiolarians (M. Bak 1995, 1996a, b). However, only very few studies comprise an integrated biostratigraphy of these deposits (Birkenmajer et al. 1979; K. Bąk et al. 1995).

The Cretaceous deposits of the Pieniny Klippen Belt provide the best material for the integrated biostratigraphical studies in the whole Carpathians, because they represent pelagic and hemipelagic calcareous-marly facies, and contain abundant microfauna. These deposits have been formed in the Pieniny Klippen Basin (Birkenmajer 1977), a part of the Penninic Ocean-northern part of Western Tethys (Fourcade et al. 1993) (Fig. 1A). The sedimentation during Albian through Campanian took place under deep-water conditions, at outer shelf through lower bathyal/abyssal depths, above or near CCD (Birkenmajer & Gasinski 1992; K. Bąk 1995a, b). They crop out in a highly tectonically deformed zone, known as the Pieniny Klippen Belt, that separates the Inner from the Outer Carpathians (Fig. 1B, C).

The present authors propose here an integrated local biostratigraphy based on planktonic Foraminifera, agglutinated Foraminifera and Radiolarians for early Albian through late Turonian time span. The correlation is based on studies of microfauna from the same samples within the same sections. Foraminifera and Radiolarians are relatively abundant in the studied deposits.

GEOLOGICAL SETTING AND RADIOLARIAN HORIZONS

Twenty five sections located at Niedzica, Krościenko, Szczawnica, Jaworki, Sromowce, Dursztyn, Szaflary and Stare Bystre have been chosen for integrated micropalaeontological analyses. A detailed description of profiles, sample location, and lithology is given in papers by K. Bąk (1992, 1993, 1998) and M. Bąk (1995, 1996a, b, 1997). In 18 of these sections, radiolarian skeletons have been found together with foraminifera, and the best sections (15) were used here for correlation purposes (Figs 1, 2).

In the sections examined, the microfauna has been recovered from the deposits of the Kapuśnica and Jaworki formations. Lithological features, thickness and age of these lithostratigraphical units, distinguished by Birkenmajer (1977, 1987), and Birkenmajer & Jednorowska (1984) and presented below, concern only the studied sections.

KAPUŚNICA FORMATION

This formation is subdivided in two members, the Brodno Member and the Rudina Member, both represented in the sections investigated.

The Brodno Member. It has been identified only in the one section as a 40 cm thick layer of black marls, ? upper Aptian in age. The radiolarian fauna is present but very rare in these deposits.

The Rudina Member. (1-20 m thick; lower-upper Albian) It is represented by green-grey and black marls and marly shales with marly limestone intercalations, with red marls appearing in the upper part. Abundant and well-preserved radiolarian skeletons are present in green and black marls and marly shales.

JAWORKI FORMATION

Deposits of the Jaworki Formation have been examined in sections belonging to all Klippen successions (Fig. 2).

The Brynczkowa Marl Member. (2-22 m thick; Vraconian-middle Cenomanian) It consists of green or grey-green marls with thin scarce red marl intercalation. Moderately to poorly preserved radiolaria are rare.

The Skalski Marl Member. (4-15 m thick; middle-upper Cenomanian) It consists of variegated marls, intercalated with green, red and grey marls. Except of the Altana Shale Bed, the radiolarians are present in this member but are rare and mostly poorly preserved.

The Altana Shale Bed. (0.4-3 m thick;
Radiolarian and foraminiferal biozonation in the Pieniny Klippen Belt

Cenomanian/Turonian boundary) It consists of black-blue, greenish and black shales and marly shales. Radiolarians are abundant but low-diversified and poorly preserved. Their pyritized skeletons are mostly found within the Czorszyn Succession deposits.

The Magierowa Marl Member. (9 m; Cenomanian/Turonian boundary) It is represented by shales, marly shales, marls, and thin-bedded marly limestone of grey to green colour with black alternations. Radiolarian fauna is abundant: well-preserved siliceous specimens are present in green and grey shales and marly shales. The radiolarians are also abundant in black shales but are often difficult to determine, because of Fe-oxide coating and pyritization.

The Trawne Member. (5 m; lower-middle Cenomanian) It consists of grey-green marls and shaly marls with sandstone intercalations. Radiolarian fauna is scarce: only a few poorly preserved specimens have been found.

The Sneznica Siltstone Member. (3-40 m;
Fig. 2. — Lithological columns of the studied sections in relation to the age of deposits (dashed line corresponds to the Cenomanian/Turonian boundary) and their attribution to Klippen successions and sedimentary zones [Pieniny Klippen Basin reconstruction after Birkenmajer (1977)]. Lithological units investigated [lithostratigraphy after Birkenmajer (1977, 1987), Birkenmajer & Jednorowska (1984)]: 1, Lorencowe Chert Bed; 2, Osice Siltstone Member; 3, Macelowa and Pustelnia Marl members; 4, Trawne Member; 5, Sneźnica Siltstone Member; 6, Altana Shale Bed; 7, Magierowa Member; 8, Skalski Marl Member; 9, Brynczkowa Marl Member; 10, Rudina Member; 11, Brodno Member; 12, Pieniny Limestone Formation. Scale bars: 5 m, except of Branisko Succession sections, 1 m.
middle Cenomanian-middle Turonian) It is represented by alternating bright blue-grey and green shaly marls with thin-bedded siltstone and sandstone, and bright-green pelitic limestone intercalations. Radiolarians are rare in this member, but the upper Cenomanian deposits are enriched in well-preserved, pyritized radiolarian skeleton.

The Macelowa Marl Member. (15-70 m; lower Cenomanian-Santonian) It consists mostly of red marls and marly limestone with thin intercalations of greenish or bluish siltstones and sandstones which appear in its lower and upper parts. Poorly preserved and mainly calcified radiolarians are present in this member. They are diversified, especially those found in a horizon corresponding to the lower-middle Turonian.

The Pustelnia Marl Member. (6-45 m; middle Cenomanian-Santonian) It consists of pure brick-red, strongly tectonized marls without clastic intercalations. Radiolarian skeletons are very scarce, poorly preserved, and mainly calcified.

The Lorencowe Chert Bed. (3 m; upper Santonian-lower Campanian) It is represented by a two-meter-thick complex consisting of alternating variegated marls (mostly red) with thin intercalations of light-green limestone. Radiolarian skeletons are also scarce, poorly preserved, mostly calcified.

RADIOLARIAN ASSEMBLAGES

Seventy seven radiolarian species have been determined from the Cretaceous deposits ranging from lower Albian to Santonian of the Pieniny Klippen Belt: 20 genera and 53 species of Nassellaria, and 11 genera and 24 species of Spumellaria were recognised (M. Bąk 1997).

The assemblages, in all Klippen successions investigated, are dominated by cryptocephalic and cryptothoracic Nassellaria belonging to the genera Holocryptocanium, Hemicryptocapsa, Cryptamphorella, Dorypyles, Hisocapsa, Trisyringium and Squinabollum. Multisegmented Nassellaria are also common being represented by the genera Dictyomitra, Thanarla, Pseudodictyomitra, Stichomitra, Xitus, Obeliscoites and Torculum. Spumellaria are less common; the most abundant are the specimens belonging to the families Actinomomidae, Praeconocaryomidae, Xiphostylidae (genera Staurosphaeretta and Triactoma), and Dactyliosphaeridae (Dactyliodiscus, Godia and Dactyliosphaera). Other Spumellaria belong to the genera Hexaptychomorpha, Cavaspongia, Pseudoaulophacus, Patellula, Paronaella and Crucella.

Two great changes in the radiolarian assemblages have been recorded within the studied deposits: 1. Beginning of an important first radiation of Radiolarians occurred during the middle Albian (Ticinella primula foraminiferal zone, K. Bąk 1992) as many new species had their first appearance in the middle and the late Albian. The maximum of differentiation in the radiolarian assemblage is observed in the Vraconian deposits (Rotalipora ticinensis through the Rotalipora appenninica-Planomalina buxtorfi foraminiferal zones, K. Bąk 1998). Starting from the upper part of the R. appenninica-P. buxtorfi foraminiferal zone towards the Cenomanian/Turonian boundary, a relative decrease in the number of species occurred. As a result, the radiolarian faunas in the Czerszyn, Branisko and Niedzica successions show great similarities. The same
characteristic taxa from the suborder Nassellaria (both cryptothoracic and cryptocephalic forms) represented by the genera *Holocryptocanium*, *Hemicryptocapsa*, *Squinabollum* and *Cryptamphorella* are the most abundant, while the genera *Dictyoymitra*, *Pseudodictyoymitra*, *Thanarla*, *Stichomitra*, *Torculum*, and *Xitus* are also common.

2. The next change in radiolarian assemblages took place around the Cenomanian/Turonian boundary. It started during the late Cenomanian (*Rotalipora cushmani* foraminiferal zone, K. Bąk 1998). At that time, the radiolarian assemblages from the Pieniny Succession became similar to those from the Czorsztyn, Niedzica and Branisko successions. Moreover, it was enriched in forms described so far only from the Silesian and the Skole units of the Outer Flysch Carpathians (*Praeconocaryomma lipmanae*, *Godia* sp., *Diacanthocapsa* sp. – see M. Bąk 1994; Gorka 1996).

FORAMINIFERAL ASSEMBLAGES

The early and middle Albian Foraminifera in the Pieniny Klippen Belt represent a well-diversified assemblage. Planktonic forms prevail, being represented by hedbergellids (*H. delrioensis*, *H. planispira* and *H. simplex*), *Globigerinelloides bentonensis*, and tincellids (*Ticinella primula*, *T. roberti*) (K. Bąk 1992). Benthos is dominated by calcareous forms with the most frequent *Gyroidinoides infracretacea*, *Gavelinella cernoniana* and *G. intermedia*, and accompanied by *Dentalina* sp., *Nodosaria* sp. and *Lenticulina* sp. Agglutinated foraminifera (predominantly infaunal forms) are infrequent in these deposits, with *Dorothia gradata*, *Spiroplectinata annectens*, *Triaxia gaultina* and *Textularia foeda* prevailing. The upper Albian planktonic Foraminifera are very numerous and more diversified. Besides the most frequent hedbergellids, *Biticinella breggien sis*, *Planomalina buxtorfi*, *Globigerinelloides bentonensis*, *G. ultramica*, praeleglobruncanids and rotaiporids occur there. Benthos is very rare, dominated by calcareous forms, similar to those present in the older assemblage. A very similar assemblage is also characteristic of the Cenomanian deposits: planktonic Foraminifera prevail there, with dominating rotaiporids, associated with representatives of the genera *Praeglobotruncana*, *Hedbergella*, *Whiteinella*, *Globigerinelloides*, *Heterohelix* and *Shackolina*. Ratio of calcareous to agglutinated benthic forms is different in pelagic and hemipelagic deposits of this stage. Agglutinated taxa prevail (more than 80% of benthos) in the scaglia rossa-type (Macelowa Marl Member) and flyschoid deposits (Trawne Member, Snežnica Siltstone Member), being dominated by *Plectorecurvoides alternans*, *Recuroides* sp., *Bulbobaculites* sp., *Trochammina* sp., *Haplalophragmoides* sp., *Spiroplectammina navarroana*, *Arenobulimina presliai*, *Dorothia* sp., *Triaxia* sp., *Glomospira* sp., and by tubular forms. Calcareous forms are more frequent in variegated and red pelagic marls (Brynczkowa Marl, Skalski Marl and Pustelnia Marl members). However, they are represented by single specimens only. Agglutinated foraminifers include the genera *Dentalina*, *Nodosaria*, *Triistix*, *Lenticulina*, *Marginulinopsis*, *Marginulina*, *Saracenaria*, *Astartocyst, Planularia*, *Globulina*, *Oolina*, *Pryulina*, *Ramulina*, *Praebulimina*, *Pleurostomella*, *Valvulineria*, *Pullenia*, *Osangularia*, *Gyroidinoides*, *Gavelinella*, *Lingulogavelinella* and *Eponides*.

A quite different foraminiferal assemblage appears in black shale facies close to the Cenomanian/Turonian boundary. Planktonic Foraminifera are still frequent in the lower part of the shales, being represented predominantly by *Rotalipora cushmani*; they are accompanied by welcomeillids, praeleglobruncanids, hedbergellids and single forms from the genera *Globigerinelloides* and *Heterohelix*. In a higher part of the shales, only single forms of *Praeglobotruncana delrioensis* and *Hedbergella delrioensis* have been found. Benthonic forms are dominated by very frequent *Lenticulina gaultina*. This form is accompanied by single specimens of agglutinated foraminifera from the genera *Bulbobaculites*, *Trochammina*, *Hormosina*, *Glomospira*, *Ammol discus* and *Rhizammina*. The middle-late Turonian foraminiferal assemblage considerably differs from the Cenomanian one. Middle Turonian was the acme of *Helvetoglobotruncana helvetica* and *H. prachelvetica*.

GEODIVERSITAS • 1999 • 21 (4)
which characterise this assemblage, while benthonic forms are almost absent. During the late Turonian, benthonic forms become more frequent, and they prevail in the latest Turonian deposits. The benthos is dominated by agglutinated taxa (more than 90%) with very characteristic *Uvigerammina jankoi*, *Recurrevoides godulensis*, *Gerochammina conversa*, *Karrerulina coniformis*, *Haplophragmoides cf. bulloides* and *Bulboculites problematicus*. Calcareous benthos is represented predominantly by the genera *Eponides*, *Stensioeina* and *Gyroidinoides*.

RADIOLARIAN BIOSTRATIGRAPHY

Radiolarian species were identified in more than 200 samples from 18 sections in the deposits of the Pieniny, Bransko, Niedzica and Czorszyn successions of the Pieniny Klippen Belt (M. Bąk 1997). Seventeen horizons containing abundant and well-preserved Radiolaria have been chosen for closer analysis (M. Bąk 1999); the Biograph 2.02 computer program (Savary & Guex 1991) based on the Unitary Associations Method was applied. This program produced a sequence of 11 U. A. (Fig. 3), which were used for constructing a radiolarian zonal standard (M. Bąk 1999). Three radiolarian zones and five subzones were proposed for the early Albian through late Turonian time span (Fig. 3). These are: (1) the *Holocryptocanium barbui* zone with *Stichomitra tosaensis*, *Squinabollum fossile*, *Thanarla veneta*, *Torculum dengoi* and *Obeliscoites maximus* subzones; (2) the *Hemicryptocapsa prepolycrada* zone; (3) the *Hemicryptocapsa polyhedra* zone. The top of each zone and subzone is defined by the FAD of the index taxon and also by the base of the overlying zone.

FORAMINIFERAL BIOSTRATIGRAPHY

Extensive biostratigraphical studies based on planktonic foraminifera were carried out in Cretaceous deposits of the Polish part of the Pieniny Klippen Belt successions, based on their first and the last appearances, and their co-occurrence based on the Unitary Associations. Abbreviations of zones: *S. tosaensis*, *Stichomitra tosaensis*, *S. fos.*, *Squinabollum fossile*, *T. pulchra*, *Thanarla pulchra*, *O. maximus*, *Obeliscoites maximus*. 1, local planktonic foraminiferal zonation after Robaszynski & Caron (1985) modified by K. Bąk (1992, 1998).

The local biozonations have been tied to the zonal standards of the Western Tethys.
The local planktonic biozonation here presented (K. Bajc 1992, 1998), is based on studies of 18 field sections (more than 270 samples) representing deposits from all sedimentary zones of the Pieniny Klippen Basin in Poland. The zones distinguished and their chronostratigraphic calibration, correspond very well with the Mediterranean zonal standard as proposed by Robaszynski & Caron (1995), with only minor revision (for more details, see K. Bajc 1998).

The biozonation based on agglutinated foraminifera follows that proposed for Outer Carpathians by Geroch & Nowak (1984), and applied also to the Pieniny Klippen Belt (K. Bajc et al. 1995).

CORRELATION OF RADIOLARIAN ZONATION WITH PLANKTONIC AND AGGLUTINATED FORAMINIFERA ZONES

Various radiolarian zonations for the late Cretaceous deposits were proposed depending on the area concerned. Two proposed standards calibrated with chronostratigraphy in the western part of the Tethys deserve special attention. The first standard was proposed by Dumitriča (1975) for the Romanian Carpathians. He recognised two radiolarian assemblages, the older assemblage and the younger one correlated with planktonic foraminifera. The Holocryptocanium barbui-H. tuberculatum assemblage corresponds, according to Dumitriča (1975), to the Rotalipora reicheli-R. cushmani zone (latest Cenomanian).

O'Dogherty's (1994) standard was more detailed and comprised a calibration with the Northern Apeninnes and Betic Cordillera. This calibration has been based on planktonic Foraminifera partially following the zonal standard as proposed by Caron (1985), with some modifications. O'Dogherty (1994) recognised five radiolarian zones correlated with the Hedbergella sigali (Barremian) through the Marginotruncana sigali (late Turonian) foraminiferal zones.

In this study, we propose a correlation of radiolarian zones with planktonic and agglutinated foraminiferal zones for the early Albian through late Turonian time span, for the Polish part of the Pieniny Klippen Belt (Fig. 4).

The definition of the Holocryptocanium barbui zone used in this zonation follows that of Schaaf's (1985), with some modification of its upper limit. The lower boundary of H. barbui zone (= lower boundary of the Stichomitra tosaensis subzone) is not well defined, because the earliest Albian and latest Aptian (Ticinella robusta planktonic foraminiferal zone and Haplophragmoides nonioninoides agglutinated foraminiferal zone) deposits are not well represented in the sections investigated, their radiolarian fauna is rare and poorly preserved. The upper boundary of the H. barbui zone falls within a lower part of the Rotalipora reicheli planktonic foraminiferal zone and the Bulbobaculites problematicus agglutinated foraminiferal zone (middle Cenomanian). The Squinabollum fossile radiolarian subzone coincides with the Bitticinella breggenis foraminiferal zone (Late Albian). The Thanarla pulchra subzone coincides with the Rotalipora ticinensis-R. subticinensis foraminiferal zone (late Albian). The lower limit of the Torculum dengoi subzone correlates with the upper boundary of the Rotalipora ticinensis-R. subticinensis foraminiferal zone. Its upper limit correlates with the upper boundary of the Rotalipora appeninica foraminiferal zone (Albian/Cenomanian boundary), and also coincides with the lower limit of the Obeliscoites maximus subzone.

The lower boundary of the Hemicyrtocapsa prepolyhedra zone corresponds to a lower part of the Rotalipora reicheli planktonic foraminiferal zone (middle Cenomanian). Its upper boundary (= lower boundary of the Hemicyrtocapsa polyhedra zone) corresponds to an upper part of the R. cushmani planktonic foraminiferal zone (late Cenomanian). The upper boundary of the H. polyhedra zone has not been defined within the deposits investigated because the Radiolaria from the latest Turonian and the Coniacian are very poorly preserved (mostly calcified). This zone correlates with the Rotalipora cushmani through Dicarinella primitiva planktonic foraminiferal zones (= upper part of Bulbobaculites problematicus and lower part of Uvigerinammina ex gr. jankoi agglutinated foraminiferal zones; late Cenomanian through late Turonian).

It is hoped that the proposed radiolarian zonal standard will become a calibration tool to which
local zonations from other Carpathian regions could be correlated.

Acknowledgements
The authors are greatly indebted to Prof. K. Birkenmajer (Institute of Geological Sciences, Polish Academy of Sciences, Kraków) for valuable editorial comments. Particular thanks are due to Prof. M. Caron (Institut de Géologie de l'Université, Fribourg) and Dr. P. Dumitrică (Institut de Géologie et Paléontologie, Université de Lausanne) who revised the manuscript. Mrs I. Chodyń (Institute of Geological Sciences, Jagiellonian University, Kraków) helped us in the laboratory part of the work. This research is a
contribution of the IGCP 362 Project, Tethyan and Boreal Cretaceous.

REFERENCES

— 1998. — Foraminiferal biostratigraphy of the upper Cretaceous red deep water deposits in the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica 111: 7-95.

Radiolarian and foraminiferal biozonation in the Pieniny Klippen Belt

Kostka A. 1993. — The age and microfauna of the Maruszyna Succession (upper Cretaceous-Paleogene), Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica 102: 7-134.

O’Dogherty L. 1994. — Biochronology and paleontology of Mid-Cretaceous radiolarians from Northern Apennines (Italy) and Betic Cordillera (Spain). Mémoires de Géologie (Lausanne) 21, 413 p.

Submitted for publication on 1 April 1998; accepted on 18 February 1999.