Zeloasperisporiales ord. nov.,
and two new species of Zeloasperisporium

Sinang HONGSANANa,b,c, Qing TIANa,b,c, Ali H. BAHKALIc, Jun-Bo YANGe,
Eric H.C. MCKENZIEf, Putarak CHOMNUNTIc & Kevin D. HYDEa,b,c,d*

aWorld Agroforestry Centre, East and Central Asia,
Kunming 650201, Yunnan, China

bKey Laboratory of Economic Plants and Biotechnology,
Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road No 132,
Panlong District, Kunming, Yunnan Province, 650201, PR China

cCentre of Excellence in Fungal Research, Mae Fah Luang University,
Chiang Rai, 57100, Thailand

dBotany and Microbiology Department, College of Science,
King Saud University, Riyadh, KSA 11442, Saudi Arabia

eGermplasm Bank of Wild Species in Southwest China,
Kunming Institute of Botany, Chinese Academy of Science,
Kunming 650201, Yunnan, China

fLandcare Research, Private Bag 92170, Auckland, New Zealand

\textbf{Abstract} – \textit{Neomicrothryium} is an epiphytic genus that forms small black dots on the surface of living or dead fallen leaves, although it rarely causes any damage to the host. Based on its flattened thriotheicia, it was considered that \textit{Neomicrothryium} belongs in the order Microthryales, a group of fungi that is relatively poorly studied. “Microthryacea”-like taxa appearing as small black dots on leaves were collected in Chiang Rai Province, Thailand, and studied using morphological characterization and phylogenetic analyses. As a result of molecular and morphological study, we established that \textit{Neomicrothryium} is linked to the asexual genus Zeloasperisporium and that we had collected two new taxa. Two new species, Zeloasperisporium ficusicola and \textit{Z. wrightiae} are therefore introduced in this study based on morphology and phylogeny. \textit{Neomicrothryium} is linked to \textit{Zeloasperisporium} and is therefore synonymized under the older name \textit{Zeloasperisporium}. Phylogenetic analyses of combined LSU and SSU rDNA sequence data indicate that Zeloasperisporiaceae belong in the class Dothideomycetes, but clusters with Natipusillales in a distinct lineage from Microthryales. We therefore introduce a new order, Zeloasperisporiales to accommodate the family Zeloasperisporiaceae. The life cycle of \textit{Zeloasperisporium} species is remarkable. The sexual morph produces ascomata on the leaf surface and appears to lack any other structures and it is unclear how the ascomata obtain nutrients. The asexual morph produces conidia which can be found on the surface of plants, or in air, but it is also unclear how conidia obtain their nutrients. In this study, isolates from the sexual morph produced asexual morphs in culture.

\textbf{Dothideomycetes} / Microthryales / \textit{Neomicrothryium} / Phylogeny / Taxonomy

* Corresponding author: kdhyde3@gmail.com

doi/10.7872/cryb/v36.iss3.2015.301
INTRODUCTION

The order Microthyriales comprises the families *Microbertidaceae* and *Microthyriaceae*. Species in this order are epiphytes, pathogens or saprobes found on leaves or stems, and have a worldwide distribution (Schoch et al., 2009; Li et al., 2011; Wu et al., 2011; Hyde et al., 2013; Hongsanan et al., 2014; Wijayawardene et al., 2014). Microthyriales species are characterized by small black dots on host plants, which are the flattened, ostiolate thyriothecia; they lack any other external structures such as hyphopodia. The thyriothecia are poorly developed at the base, asci are bitunicate with fissitunicate dehiscence, and ascospores are hyaline to brown and one to multi-septate (Arnaud, 1918; Luttrel, 1973; von Arx & Müller, 1975; Barr, 1987; Kirk et al., 2008; Wu et al., 2011; Hyde et al., 2013; Hongsanan et al., 2014). *Microthyriaceae* is the type family of Microthyriales and differs from *Microbertidaceae* in having thyriothecia with radiating cells, a prominent central ostiole, fusiform to cylindrical asci, and 1-septate ascospores, often with ciliate appendages (Doidge, 1942; Müller & von Arx, 1962; Luttrel, 1973; Hofmann & Piepenbring, 2006; Hofmann, 2010; Wu et al., 2011, 2014; Hyde et al., 2013; Hongsanan et al., 2014). Species of *Microbertidaceae* are characterized by black to blue, or greenish to black, flattened thyriothecia with central ostioles and are poorly developed at the base, with walls comprising interwoven hyphae, and hyaline ascospores with one to several transverse septa (Clements & Shear, 1931; Batista, 1959; von Arx & Müller, 1975; Barr, 1987; Wu et al., 2011). Taxa of Microthyriales have been poorly studied and there is little molecular data in GenBank (Wu et al., 2011; Hongsanan et al., 2014). *Neomicrothyrium* was introduced as a monotypic genus by Wu et al. (2011), with the type species *N. siamense* Boonmee et al. This genus is typical of *Microthyriaceae* in having flattened thyriothecia with radiating cells, however, it differs in lacking an ostiole (Wu et al., 2011). Wu et al. (2011) noted that the genus can probably be placed in Microthyriales based on its phylogeny and the morphology of the sexual morph.

Zeloasperisporium was introduced by Castañeda Ruiz et al. (1996) to accommodate *Zeloasperisporium hyphopodioides* R.F. Castañeda, a species isolated from air in Cuba, but was not placed in any family. *Zeloasperisporium hyphopodioides* was placed in *Venturiaceae* by Crous et al. (2007) as it clustered basal to the family *Venturiaceae*. A second species, *Zeloasperisporium eucalyptorum* Cheew. & Crous was introduced by Cheewangkoon et al. (2009) from leaves of *Eucalyptus tectifolia*. Phylogenetic analysis placed the species in *Venturiaceae* (Cheewangkoon et al., 2009). A third species, *Zeloasperisporium cliviae* Crous, was isolated from leaves of *Clivia* sp. and was introduced by Crous et al. (2015) and placed in a new family *Zeloasperisporiaceae*, comprising the genera *Neomicrothyrium* and *Zeloasperisporium*. Both of these genera had not previously been linked. *Zeloasperisporiaceae* was poorly resolved in molecular analysis in Crous et al. (2015) and appears related to freshwater taxa in the order Natipusillales, an order with which it has no obviously similar morphological characters (Ferrer et al., 2011; Wu et al., 2011). In this study we collected two further species of *Neomicrothyrium* which produced *Zeloasperisporium* states in culture. We therefore consider these to be the same genera and combine them under the older name *Zeloasperisporium*.

In this study, we introduce the two new species as *Zeloasperisporium ficusicola* and *Z. wrightiae*. A combination of morphological and phylogenetic analyses shows the new taxa to differ from other species in *Zeloasperisporiaceae*. *Neomicrothyrium* is synonymized under *Zeloasperisporium* based on morphology of the sexual and asexual morphs, as well as phylogenetic analyses.
MATERIAL AND METHODS

Collections, morphology and isolation

Specimens were collected in Chiang Rai Province, northern Thailand. Gross morphology was observed under a stereomicroscope, and photographed. Sections of ascomata were made free-hand. Various specimens were used to observe the asci and ascospore characters and slides were preserved in lactoglycerol. Morphological characters were observed under a compound microscope (Nikon 80i), and measurements were determined using Tarosoft (R) Image Frame Work v. 0.9.7. Single spore isolation was carried out using a sterile needle to remove ascospores from 5 to 10 ascomata, which were then placed in a drop of sterile water on a glass slide. A spore suspension was obtained, and transferred with a sterile pipette onto the surface of a PDA (potato dextrose agar) plate. The plate was left 12 h of light/12 h at 25-28°C to allow spores to germinate and thereafter observed every 12 hours. Germinated ascospores were transferred onto fresh PDA media, and incubated at 25-28°C (Chomnunti et al., 2011, 2014). Type specimens of the new species are deposited in the Mae Fah Luang University Herbarium (MFLU), Chiang Rai, Thailand, and ex-type cultures are deposited in Mae Fah Luang University Culture Collection (MFLUCC), and in Kunming Institute of Botany (KIB). Faces of fungi numbers and Index Fungorum numbers are as explained in Jayasiri et al. (2015) and Index Fungorum (2015).

DNA isolation, amplification and sequencing

Fungal isolates were grown on 2% PDA for 20 days at 25°C. Genomic DNA was extracted from the growing mycelium using the Biospin Fungus Genomic DNA Extraction Kit-BSC14S1 (BioFlux®, P.R. China); following the instructions of the manufacturer (Hangzhou, P.R. China). Polymerase chain reaction (PCR) was carried out using known primer pairs LROR and LR5 to amplify a region spanning the large subunit rDNA (White et al., 1990). The amplification was performed following the instructions, and were set up for initial denaturation of 5 min at 95°C, followed by 35 cycles of 45 s at 94°C, 45 s at 52°C and 90 s at 72°C, and a final extension period of 10 min at 72°C. PCR-products were checked on 1% agarose electrophoresis gels stained with ethidium bromide. Purification and sequencing of PCR products were done by Majorbio Co., China. DNA sequence data were obtained from the large subunit rDNA (LSU) and the small subunit rDNA (SSU). Primer sequences and database are available in GenBank.

Phylogenetic analysis

Sequences data were downloaded from GenBank to supplement the dataset (Table 1) and aligned with those newly obtained using Clustal X 2.0.11 (Thompson et al., 1997), and then checked manually using Bioedit (Hall, 2004). Schismatomma decolora was selected as outgroup.

Maximum likelihood analysis was performed by using raxmlGUIv.0.9b2 (Silvestro & Michalak, 2012). The search strategy was set to rapid bootstrapping and the analysis carried out using the GTRGAMMA model of nucleotide substitution. The number of replicates was inferred using the stopping criterion (Pattengale et al., 2009). Maximum likelihood bootstrap values equal or greater than 70% are given as the first set of numbers above the nodes (Fig. 1). The model of evolution was carried out using MrModeltest 2.2 (Nylander et al., 2008). Posterior probabilities (PP)
(Rannala & Yang, 1996; Zhaxybayeva & Gogarten, 2002) were determined by Markov Chain Monte Carlo sampling (MCMC) using MrBayes v3.1.2 (Huelsenbeck & Ronquist, 2001). Six simultaneous Markov chains were run for 1,000,000 generations and trees were sampled every 100th generation and 10,000 trees were obtained. The first 2,000 trees, representing the burn-in phase were discarded. The remaining 8,000 trees were performed for calculating posterior probabilities (Cai et al., 2006, 2008, 2009). Bayesian posterior probabilities (BYPP) equal or greater than 0.95 are given as the second set of numbers above the nodes (Fig. 1).

Table 1. Taxa used in the phylogenetic analysis and GenBank accession numbers (LSU and SSU) and species voucher/culture numbers

<table>
<thead>
<tr>
<th>Species</th>
<th>Voucher/ culture numbers</th>
<th>Accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiosporina collinsii</td>
<td>CBS 118973</td>
<td>GU301798</td>
</tr>
<tr>
<td>Asterina phenacis</td>
<td>TH589</td>
<td>GU586217</td>
</tr>
<tr>
<td>Asterina weinmanniae</td>
<td>TH 592</td>
<td>GU586218</td>
</tr>
<tr>
<td>Asterina zanthoxyli</td>
<td>TH 561</td>
<td>GU586219</td>
</tr>
<tr>
<td>Chaetothyriothecium elegans</td>
<td>CPC 21375</td>
<td>KF268420</td>
</tr>
<tr>
<td>Fusicladium pini</td>
<td>CBS 463.82</td>
<td>EU035436</td>
</tr>
<tr>
<td>Fusicladium ramoconidii</td>
<td>CBS 462.82</td>
<td>EU035439</td>
</tr>
<tr>
<td>Micropeltis zingiberacica</td>
<td>IFRDCC 2264</td>
<td>JQ036222</td>
</tr>
<tr>
<td>Microthyrium microsporicum</td>
<td>CBS 115976</td>
<td>GU301846</td>
</tr>
<tr>
<td>Natipusilla decorospora</td>
<td>L_A236_1A</td>
<td>HM196369</td>
</tr>
<tr>
<td>Natipusilla limonensis</td>
<td>L_AF286_1A</td>
<td>HM196370</td>
</tr>
<tr>
<td>Natipusilla naponensis</td>
<td>L_AF217_1A</td>
<td>HM196371</td>
</tr>
<tr>
<td>Paramicrothyrum chinensis</td>
<td>IFRDCC2258</td>
<td>KF636760</td>
</tr>
<tr>
<td>Phaeotrichum benjamini</td>
<td>CBS 541.72</td>
<td>GU357788</td>
</tr>
<tr>
<td>Schimatoma decolorans</td>
<td>DUKE 004750</td>
<td>NG 027622</td>
</tr>
<tr>
<td>Stomiopeltis betulae</td>
<td>CBS 114420</td>
<td>GU214701</td>
</tr>
<tr>
<td>Sympomadura capensis</td>
<td>CPC 12840</td>
<td>DQ885904</td>
</tr>
<tr>
<td>Sympomadura capensis</td>
<td>CBS 120136</td>
<td>DQ885906</td>
</tr>
<tr>
<td>Trichodelitschia bisporula</td>
<td>CBS 262.69</td>
<td>GU348996</td>
</tr>
<tr>
<td>Trichodelitschia munkii</td>
<td>CBS 118232</td>
<td>DQ384096</td>
</tr>
<tr>
<td>Venturia inaequalis</td>
<td>CBS 815.69</td>
<td>GU301878</td>
</tr>
<tr>
<td>Venturia inaequalis</td>
<td>CBS 594.70</td>
<td>GU301879</td>
</tr>
<tr>
<td>Zelaosasperisporium cliviae</td>
<td>CPC 25145</td>
<td>KR476781</td>
</tr>
<tr>
<td>Zelaosasperisporium eucalyptorum</td>
<td>CBS:14603</td>
<td>GQ303329</td>
</tr>
<tr>
<td>Zelaosasperisporium ficuscola</td>
<td>MFLUCC 15-0221</td>
<td>KT387733</td>
</tr>
<tr>
<td>Zelaosasperisporium ficuscola</td>
<td>MFLUCC 15-0222</td>
<td>KT387735</td>
</tr>
<tr>
<td>Zelaosasperisporium hypophosphoides</td>
<td>CBS 218.95</td>
<td>EU035442</td>
</tr>
<tr>
<td>Zelaosasperisporium siamenense</td>
<td>IFRDCC 2194</td>
<td>JQ036228</td>
</tr>
<tr>
<td>Zelaosasperisporium wrightiae</td>
<td>MFLUCC 15-0210</td>
<td>KT387739</td>
</tr>
<tr>
<td>Zelaosasperisporium wrightiae</td>
<td>MFLUCC 15-0214</td>
<td>KT387741</td>
</tr>
<tr>
<td>Zelaosasperisporium wrightiae</td>
<td>MFLUCC 15-0224</td>
<td>KT387740</td>
</tr>
<tr>
<td>Zelaosasperisporium wrightiae</td>
<td>MFLUCC 15-0225</td>
<td>KT387737</td>
</tr>
</tbody>
</table>

S. Hongsan et al.
Fig. 1. RAxML maximum likelihood phylogenetic tree (LSU and SSU). The first set of numbers above the nodes are RAxML bootstrap values expressed from 1,000 repetitions with values above 70% shown. The second set of numbers above the nodes are Bayesian posterior probabilities, with values above 0.95 shown. Strain numbers are indicated after species names. New sequence data are in blue bold, and other types are in black bold.
RESULTS

Molecular phylogeny

LSU and SSU sequence data of Zeloasperisporium ficusicola and Z. wrightiae were blasted in GenBank to find the most closely related strains. Sequence data from taxa in Asterinales, Microthryiales, Natipussilales, Phaeotrichales, and Venturiales were downloaded from GenBank to supplement the dataset (Table 1). Phylogenetic analyses used LSU and SSU sequence data (Fig. 1). The Asterinales clade comprises three representative members of Asterinaceae (100% ML, 0.1 PP support). The Natipussilaceae clade contains three strains of freshwater species in Natipusilla (100% ML, 0.1 PP support), and clustered as a sister group to the Zeloasperisporiaceae clade (83% ML, 0.96 PP support). However, Zeloasperisporiaceae species are not morphologically similar to species of Natipussilaceae, and form a distinct lineage from Microthryiales in the class Dothideomycetes. Thus, Zeloasperisporiaceae represents a new order in Dothideomycetes. Zeloasperisporium ficusicola and Z. wrightiae cluster within the clade of Zeloasperisporiaceae (100% ML, 0.1 PP support), and are distinct species. The Microthryiaceae clade contains six strains from Microthyriaceae (100% ML, 0.1 PP support), and includes Stomiopeltis betulae (92% ML, 1.0 PP support). The Micropeltidaceae clade contains Micropeltis zingiberaciscola from Micropeltidaceae (90% ML, 1.0 PP support). Paramicrothyrium chinensis which belongs to Microthyriaceae in Wu et al. (2001), nests between Micropeltidaceae and Microthyriaceae clade (90% ML, 1.0 PP support). Three strains of Phaeotrichaceae clade in the Phaeotrichales clade (100% ML, 0.1 PP support). The Venturiales clade comprises three strains of Venturidaceae, and five strains of Symboventuridaceae (80% ML, 0.99 PP support), which probably had the same ancestor as Microthryiales.

TAXONOMY

Zeloasperisporiales Hongsanan & K.D. Hyde, ord. nov.

Facesoffungi number: FoF 00900; Index Fungorum number: IF 551336.

Epiphytic on the surface of living and dead fallen leaves, appearing as small black dots, or in air. Superficial hyphae absent. Sexual morph: Thyrotheca superficial, solitary, circular, flattened, brown to dark brown, easy removed, base poorly developed, ostiole lacking. Upper wall composed of ellipsoid angular cells, radiating from the center to the outer rim. Pseudoparaphyses not observed. Asci 8-spored, bitunicate, fission turcite, globose to ovoid or clavate, apedicellate, with an apical ocular chamber. Ascospores 2-3-seriate, obovoid to clavate, 1-septate, slightly constricted at the septum, widest in upper cell, hyaline, smooth-walled or verrucose, surrounded by a thin mucilaginous sheath, or without mucilaginous sheath in some species (Wu et al., 2011; Crous et al., 2015). Asexual morph: Hyphae branched, septate, and swollen by constrictions at the septa, pale brown to brown, occasionally hyaline, smooth-walled, micronematous conidiogenous present or absent. Conidiofores reduced to conidiogenous cells, arising as lateral hyphal branches, cylindrical to subcylindrical, straight or slightly curved, unbranched, slightly tapering
towards the apex, brown, slightly thick-walled. *Conidial proliferation* sympodial, with one to several conidiogenous loci, mostly crowded at the apex, protuberant of conidial scars thickened-refractive. *Conidia* fusiform to obclavate or cylindrical, straight to curved, 1-3-septate, distinctly or slightly constricted at the septum, tapered towards the apex, toward a protruding scar, somewhat thickened and darkened-refractive, pale brown to brown, smooth-walled or verrucose.

Notes: Phylogenetic analyses using LSU and SSU indicates that *Zeloasperisporiaceae* is a distinct lineage from Microthyriales in the class Dothideomycetes, and appears to form a distinct sister relationship to Natipusillales which is freshwater family. However, morphologically Natipusillales and *Zeloasperisporiaceae* are very different, their habitats are also distinct and thus *Zeloasperisporiaceae* represents a new order.

Zeloasperisporium R.F. Castañeda, Mycotaxon 60: 284 (1996)

Notes: *Zeloasperisporium* was established by Castañeda (1996), with the type species *Z. hypophodioides*. The genus was placed as genera *incertae sedis* based on its morphology differing from other hyphomycetes. Crous et al. (2007) re-examined the type culture of *Z. hypophodioides* and found that *Zeloasperisporium* clustered basal to the family *Venturiaceae* in their phylogenetic tree. Cheewangkoon et al. (2009) introduced a *Zeloasperisporium* species from *Eucalyptus tectifica* which was closely related to the type species in phylogenetic tree, therefore the placement of *Zeloasperisporium* was supported in *Venturiaceae*. Crous et al. (2015) introduced a new family *Zeloasperisporiaceae* to accommodate two genera, *Neomicrothyrium* and *Zeloasperisporium*. In this paper we synonymize *Neomicrothyrium* under *Zeloasperisporium*.

Zeloasperisporium siamense (Boonmee et al.) Hongsanan & K.D. Hyde, *comb. nov.*

Facesoffunginumber: FoF 00901; Index Fungorum number: IF 551338.

Epiphyte on the surface of dead fallen leaves, appearing as small black dots. *Superficial hyphae* absent. Sexual morph: *Thyrothecia* superficial, solitary, circular, flattened, brown to dark brown, easy removed, base poorly developed, ostiole lacking. *Upper wall* composed of ellipsoid angular cells, radiating from the center to the outer rim. *Pseudoparaphyses* not observed. *Asci* 8-spored, bitunicate, fissitunicate, globose to ovoid or clavate, apedicellate, with an apical ocular chamber. *Ascospores* 2-3-seriate, obvoid to clavate, 1-septate, slightly constricted at the septum, widest in upper cell, hyaline, smooth-walled, surrounded by a thin mucilaginous sheath (Wu et al., 2011). Asexual morph: Undetermined (Wu et al., 2011).
Notes: *Neomicrothyrium* was introduced as a monotypic genus based on morphology of sexual morph and phylogenetic analyses by Boonme *et al.* (in Wu *et al.*, 2001), with the type species *N. siamense*. Species of *Zeloasperisporium* was described and introduced by asexual characters (Crous *et al.*, 2007; Cheewangkoon *et al.*, 2008; Crous *et al.*, 2015). Crous *et al.* (2015) included *Neomicrothyrium* and *Zeloasperisporium* in *Zeloasperisporiaceae* based on phylogenetic analyses, although these two genera occurred as different morphs. Moreover, there was no evidence linking the sexual and asexual morphs, and little molecular data was available in GenBank. Phylogenetic analyses of LSU and SSU from the two new species in this paper demonstrate that *Zeloasperisporium ficuscola* is closely related to *Neomicrothyrium siamense*. Furthermore, sexual characters of *Z. ficuscola* are also typical of *N. siamense* in having flattened thyriotheca, lacking an ostiole, and in having hyaline, 1-sepate ascospores. The asexual morph of *Z. ficuscola* is however, identical to *Zeloasperisporium* in having conidiophores reduced to conidigenous cells, sympodial proliferation, mostly crowded at the apex of conidiogenous cells, and 1-2-septate, hyaline conidia. Thus, *Neomicrothyrium* should be synonymized under the older name *Zeloasperisporium* based on its sexual and asexual state morphology, as well as phylogenetic evidence.

New species of Zeloasperisporium

Zeloasperisporium ficuscola Hongsanan & K.D. Hyde, sp. nov. Figs 2-3

Facesoffungi number: FoF 00886; *Index Fungorum number:* IF 551314.

Etymology: *ficuscola* referring to the host on which the taxon was found.

Holotype: MFLU 15-1306.

Epiphytic on the upper and lower surface of dead leaves, appearing as very small black dots. *Superficial hyphae* absent. *Sexual morph:* *Thyriotheca* 170-215 μm diam. (x = 192 μm; n = 5), superficial, solitary, circular or subcircular, flattened, brown to dark brown, with a 20-24 μm wide darkened rim, rounded at the margin, easy removed, base poorly developed, ostiole lacking. *Upper wall* comprising dark brown cells of *textura angularis*, radiating from the center to the outer rim. *Pseudoparaphyses* not observed. *Asci* 15-17 × 18-20 μm (x = 15.5 × 19 μm; n = 10), 8-spored, bitunicate, fissitunicate, globose to subglobose, apodellite, rounded at apex, with an ocular chamber. *Ascospores* 7-8 × 3-4 μm (x = 7.6 × 3 μm; n = 10), 2-3-seriate, ellipsoid to fusiform, or obovoid, 1-septate, slightly constricted at the septum, upper cell wider than lower cell, rounded to narrow ends, hyaline, smooth-walled, lacking a mucilaginous sheath. *Asexual morph:* *Hyphae* 2-4 μm diam., branched, septate, and swollen by constrictions at the septa, pale brown to brown, occasionally hyaline, smooth-walled, micromematous conidiogenous cells lacking. *Conidiophores* 11-14 × 3-4 μm (x = 13 × 3.5 μm; n = 10), reduced to conidigenous cells, arising as lateral hyphal branches, cylindrical to subcylindrical, straight or slightly curved, unbranched, slightly tapering towards the apex, brown, slightly thick-walled. *Conidial proliferation* sympodial, with one to several conidiogenous loci, mostly crowded at the apex, protuberant of conidial scars thickened-refractive. *Conidia* 14-16 × 3-5 μm (x = 15 × 4.5 μm; n = 10), fusiform to obclavate or cylindrical, straight to curved, 1-septate, slightly constricted at the septum, tapered towards the apex, toward a protruding scar, somewhat thickened and darkened-refractive, pale brown to brown, smooth-walled.

Culture characters: Ascospores germinating on PDA at 25-28°C for 12 h of light/12 h of dark, germ tubes appearing from each end of the ascospores, septate,
constricted at the septum, hyaline to brown but becoming brown to dark brown, or black, olivaceous green, reverse iron gray later. Colonies reaching 2 cm diam. after 7 days on PDA at 25-28°C, colony superficial to erumpent, surface smooth, velvety, easily removed, asexual structures was produced in PDA after 5 days incubation (Fig. 3).

Material examined: THAILAND, Chiang Rai, Mae Fah Luang University, near S7 building, on leaves of Ficus benjamina L. (Moraceae), 24 January 2015, S. Hongsanan S7 (MFLU 15-1306, holotype); ex-type living culture, MFLUCC 15-0221, MFLUCC 15-0222, KIB.

Notes: The sexual morph of Zeloasperisporium ficusicola is most similar to Z. siamense (Boonmee et al.) Hongsanan & K.D. Hyde, but differs in having larger, darker brown thyrothecia, with a thick, darkened rim, globose to subglobose asci and ascospores with rounded to narrow ends. Zeloasperisporium siamense has thyrothecia with a thin, darkened rim, globose to subglobose or clavate to ovoid asci and ascospores surrounded by a thin mucilaginous sheath (Fig. 2). Zeloasperisporium ficusicola produces an asexual morph in media which is
morphologically similar to *Z. cliviae* Crous *et al.* (2015) (Fig. 3). There is no report concerning the asexual morph in *Z. siamense*. Molecular analyses indicate that *Z. ficuscola* is closely related to *Z. siamense*, but is a distinct species.

Zeloasperioporum wrightiae Hongsanan & K.D. Hyde, sp. nov.

Facesoffungi number: FoF 00887; *Index Fungorum number*: IF 551313.
Etymology: *wrightiae* referring to the host on which the taxon was found.
Holotype: MFU 15-1308.
Epiphytic on the upper surface of living leaves, rarely on the lower surface, appearing as small black dots. *Superficial hyphae* absent. *Sexual morph*: Thyrothecia 225-600 μm diam. (x̄ = 530 μm; n = 5), superficial, solitary, circular, flattened, dark brown, with 8 × 10 μm wide darkened rim, rounded at the margin, easy removed, but difficult to remove at the margin, base poorly developed, ostiole lacking. *Upper wall* comprising dark brown cells of *textura angular*, radiating from the center to the outer rim. *Pseudoparaphyses* not observed. *Asci* 15-18 × 19-22 μm (x̄ = 16 × 21 μm; n = 10), 8-spored, bitunicate, fissitunicate, globose to subglobose, or broadly clavate, apedicellate, rounded at apex, with an ocular chamber. *Ascospores* 8-10 × 3-4 μm (x̄ = 9 × 4 μm; n = 10), 2-3-seriate, ellipsoid to fusiform, or obovoid,
1-septate, slightly constricted at the septum, upper cell wider than lower cell, rounded ends, hyaline, smooth-walled to slightly verrucose, surrounded by a thin mucilaginous sheath. **Asexual morph:** Hyphae 2-4 μm diam., branched, septate, and swollen by constrictions at the septa, pale brown to brown, occasionally hyaline, smooth-walled, micronematous conidiogenous present 3-4 × 1-2 μm (\(\bar{x} = 3.4 \times 1.5 \) μm; \(n = 10 \)).
Fig. 5. *Zeloasperisporium wrightiae* (MFLU 15-1309).

- **a.** Substrate.
- **b, c.** Thyriotheca on surface of leaves.
- **d.** Section through thyriothecium.
- **e-h.** Thyriothecia in squash mounts and close-up of asci arrangement.
- **i, j.** Asci with 8 spores.
- **k, l.** Ascospores surrounded by a thin sheath.
- **m.** Ascospore germinating, with monilioid hyphae.

Scale bars:
- c = 500 μm,
- d = 50 μm,
- e = 100 μm,
- f-h = 20 μm,
- i, j, m = 10 μm,
- k, l = 5 μm.
Fig. 6. The thyrothecal margin of *Zeloasperisporium wrightiae* where it is attached to the host.
a. Section through thyrothecium. *b*-d. The thyrothecal margin with attachment organs. Scale bars:
a = 50 μm, b = 20 μm, c, d = 10 μm.

Fig. 7. *Zeloasperisporium wrightiae* (asexual morph). *a*-c. Colonies on PDA. *d*. Crowded conidia on
h-j. Conidia on conidiogenous cell with sympodial proliferation. Scale bars: *a*-c = 1 cm, *d*-f, *h*,
i = 10 μm, g = 5 μm.
Conidiophores 14-16 × 3-4 μm (\(\bar{x} = 15 \times 3.8 \mu m; n = 10 \)), reduced to conidiogenous cells, arising as lateral hyphal branches, cylindrical to subcylindrical, straight or slightly curved, unbranched, slightly tapering towards the apex, brown, slightly thick-walled. Conidial proliferation sympodial, with one to several conidiogenous loci, mostly crowded at the apex, protuberant of conidial scars thickened-refractive. Conidia 14-17 × 4-5 μm (\(\bar{x} = 15 \times 4.5 \mu m; n = 10 \)), fusiform to obclavate or cylindrical, straight to curved, 1-septate, slightly constricted at the septum, tapered towards the apex, toward a protruding scar, somewhat thickened and darkened-refractive, pale brown to brown, smooth-walled.

Culture characters: Ascospores germinating on PDA at 25-28°C under 12 h of light/12 h of dark, hyphae emerging from both cells of the ascospores, separte, strongly constricted at the septa forming monilioid cells in culture, hyaline to brown initially, becoming dark brown to black, bluish reverse iron gray later. Colonies reaching 2 cm diam. after 4 days on PDA at 25-28°C, colony superficial to erumpent, surface verrucose, velvety, easily removed, powder-like, asexual morph structures was produced in PDA after 3 days incubation (Fig. 7).

Material examined: THAILAND, Chiang Rai, Tasud, Mae Fah Luang University, on leaves of Wrightia religiosa Benth. (Apocynaceae), 15 January 2015, S. Hongsanan MOK01 (MFLU 15-1308, holotype); ex-type living culture, MFLUCC 15-0225, MFLUCC 15-0210, KIB; Chiang Rai, Tasud, House No. 496, on leaves of W. religiosa(Apocynaceae), 12 February 2015, S. Hongsanan MOK02 (MFLU 15-1307), MFLUCC 15-0224, KIB; Chiang Rai, Tasud, Mae Fah Luang University, STK resort, on leaves of undetermined tree, 21 January 2015, S. Hongsanan STK08 (MFLU 15-1309); MFLUCC 15-0214, MFLUCC 15-0215, KIB.

Notes: Zeloasperisporium wrightiae is similar to Z. siamense, but it was found on living leaves, while Z. siamense was found on dead fallen leaves. The thryotheica are relatively larger and darker in Z. wrightiae, while smaller and brown in Z. siamense (Figs 4, 5). Zeloasperisporium wrightiae differs from Z. ficusicola in having larger and darker thryotheica (Fig. 6), and ascospores surrounded by a thin mucilaginous sheath. Molecular analyses indicate that Z. wrightiae is closely related to Z. eucalyptorum Cheew. & Crous, but is distinct species within the genus Zeloasperisporium.

DISCUSSION

The two new species introduced in this study show that sexual characters of Zeloasperisporium are identical to Neomicrothryum, thus the genus Neomicrothryum is synonymy under Zeloasperisporium; this is also well-supported in our phylogenetic analyses. Zeloasperisporium ficusicola and Z. wrightiae are similar to Z. siamense in having flattened thryotheica, lacking obvious ostioles, possessing an upper peridial wall comprising cells radiating from the centre, and a poorly developed base (Wu et al., 2011). Zeloasperisporium ficusicola differs from Z. siamense in having large thryotheica with thick, darkened rims. Zeloasperisporium siamense is characterized by a thin, darkened rim, small, pale brown to brown thryotheica, and rounded ends to the ascospores. Zeloasperisporium wrightiae is distinct from Z. ficusicola and Z. siamense as it was found on living leaves, it has larger and darker thryotheica, is difficult to remove at the ascomatal margin, and it has slightly verrucose ascospores. The phylogenetic analyses of LSU and SSU
rDNA sequence data indicate that *Z. ficusicola* is related to, but well-resolved from *Z. siamense* and *Z. wrightiae*, and well-resolved from *Z. eucalyptorum*. *Zeloasperisporium* is placed in the phylogenetic tree as a distinct lineage from Microthyriales in the class Dothideomycetes, but with a sister relationship to Natipusillales. The latter is a family of freshwater taxa with a very different morphology, thus, we introduce a new order Zeloasperisporiales to accommodate *Zeloasperisporium*. After ascospore germination on agar, both new species produce distinctive hyphae that are strongly constricted at the septa.

Species of *Zeloasperisporium* can be found on dead and living leaves in Thailand, and are frequently found on plants during the cold season (December to February). *Zeloasperisporium siamense* (Wu *et al.*, 2011) was also collected during this period. After February, we were unable to find this fungus even in the locations where we previously collected them.

The life cycle of *Zeloasperisporium* species are remarkable. The sexual morph produce ascomata on the leaf surface and appear to lacks any other structures and it is unclear how they obtain their nutrients. Attempts to observe any attachment and absorption organs in *Zeloasperisporium ficusicola* and *Z. wrightiae* using free-hand section (stained in Melzer’s reagent, cotton blue reagent, and Congo red) did not reveal any penetration of the host. *Zeloasperisporium wrightiae* attaches on the surface of host plants at the ascomatal margin thus making it difficult to remove ascomata. Thus, the sexual morphs of *Zeloasperisporium* found on living leaves may obtain nutrients from plant cells at the margin of the thyriothecia (Fig. 6).

The asexual stage on the other hand, have been isolated from the air and leaves which may obtain nutrients from plant cells using appressorium-like, inflated hyphopodia which are slightly warted to lobed at the apex (Castañeda *et al.*, 1996). However, Crous *et al.* (2007) recognized this structure as conidiogenous cells of a synanamorph forming a second conidial type.

Acknowledgements. The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Prolific Research group (PRG-1436-09). Kevin D. Hyde thanks the Chinese Academy of Sciences, project number 2013T2S0030, for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany.

REFERENCES

Zeloasperisporiales ord. nov.

